[1] K. Wang, D. Zhao, Optimal nonlinearity control of Schrodinger equation, Evol. Equ. Control Theory 7, 317–33 (2018).
[2] Q. X. Wang, D. Zhao, Existence and mass concentration of 2D attractive Bose-Einstein condensates with periodic potentials, J. Differential Equations 262, 2684-2704 (2017).
[3] Y. J. Zhang, Zhao, D. Zhao, W. X. Ma, A unified inverse scattering transformation for the local and nonlocal nonautonomous Gross-Pitaevskii equations, J. Math. Phys.58, 013505 (2017).
[4] Q. X. Wang, D. Zhao, K. Wang, Existence of solutions to nonlinear fractional schrodinger equations with singular potentials, Electron. J. Differential Equations 2016, 1-19 (2016).
[5] B. H. Feng, D. Zhao, Optimal bilinear control of Gross–Pitaevskii equations with Coulombian potentials, J. Diff. Eqn. 260, 2973–2993 (2016).
[6] B. H. Feng, D. Zhao, and C. Y. Sun, Homogenization for nonlinear Schrodinger equations with periodic nonlinearity and dissipation in fractional order spaces, Acta Mathematica Scientia 35, 567-582 (2015).
[7] D. Zhao, S. W. Song, L. Wen, Z. D. Li, H. G. Luo, and W.M. Liu,Topological defects and inhomogeneous spin patterns induced by the quadratic Zeeman effect in spin-1 Bose-Einstein condensates, Phys. Rev. A 91, 013619 (2015).
[8] B. H. Feng, D. Zhao, Global well-posedness for nonlinear Schrodinger equations with energy-critical damping, Elect. J. Differential Equations. 2015, 1–9 (2015).
[9] Y. J. Zhang, D. Zhao, and H. G. Luo, Multi-soliton management by the integrable nonautonomous nonlinear integro-differential Schrodinger equation, Ann. Phys. 350, 112-123 (2014).
[10] B. H. Feng, D. Zhao, and P. Y. Chen, Optimal bilinear control of nonlinear Schrodinger equations with singular potentials, Nonlinear Anal. 107, 12-21 (2014).
[11] B. H. Feng, D. Zhao, C. Y. Sun, On the Cauchy problem for the nonlinear Schrodinger equations with time-dependent linear loss/gain, J. Math. Anal. Appl. 416, 901-923 (2014).
[12] B. H. Feng, D. Zhao, and C. Y. Sun, The limit behavior of solutions for the nonlinear Schrodinger equation including nonlinear loss/gain with variable coefficient,J. Math. Anal. Appl. 405, 240-251 (2013).
[13] C. Y. Ding, D. Zhao, and H. G. Luo, Painleve integrability of two-component nonautonomous nonlinear Schrodinger equations, J. Phys. A: Math. Theor. 45, 115203 (2012).
[14] D. Zhao, Y. J. Zhang, W. W. Lou, and H. G. Luo,AKNS hierarchy, Darboux transformation and conservation laws of the 1-D nonautonomous nonlinear Schrodinger equations,J. Math. Phys. 52, 043502 (2011).
[15] D. Zhao, X. G. He, and H. G. Luo , Transformation from the nonautonomous to standard NLS equations, Eur. Phys. J. D 53, 213–216 (2009).
[16] X. G. He,D. Zhao, L. Li and H. G. Luo,Engineering integrable onautonomous nonlinear Schrodinger equations, Phys. Rev. E 79, 056610 (2009).
[17] H. G. Luo, D. Zhao, and X. G. He, Exactly controllable transmission of nonautonomous optical solitons, Phys. Rev. A 79, 063802 (2009).
[18] D. Zhao, H. G. Luo and H.Y. Chai,Integrability of the Gross–Pitaevskii equation with Feshbach resonance management, Phys. Lett. A 372, 5644–5650 (2008).
[19] D. Zhao, S. J. Wang and Luo Hong-Gang,Differential Representations of SO(4) Dynamical Group, Commun. Theor. Phys. 50, 63-68 (2008).
[20] X. L. Fan and D. Zhao, Regularity of quasi-minimizers of integral functionals with discontinuous -growth conditions, Nonlinear Anal. 65, 1521—1531 (2006).
[21] X. L. Fan, Q. H. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem,J. Math. Anal. Appl. 302, 306-317 (2005).
[22] D. Zhao, H. G. Luo, S. J. Wang and W. Zuo, A direct truncation method for finding abundant exact solutions and application to the one-dimensional higher-order Schr?dinger equation, Chaos, Solitons and Fractals 24, 533–547 (2005).
[23] D. Zhao and C.K. Zhong, Existence of local strong solutions of elliptic systems on unbounded domain, Inter. J. Diff. Eqns. & Appl. 7, 115-121 (2003).
[24] S. J. Wang, C. L. Jia, D. Zhao, H. G. Luo and J. H.An,Dark and bright solitons in a quasi-one-dimensional Bose-Einstein Condensates,Phys. Rev. A 68, 015601 (2003).
[25] S. J. Wang, D. Zhao, H. G. Luo, L. X. Cen and C. L. Jia,, Exact solution to the von Neumann equation of the quantum characteristic function of the two-level Jaynes-Cummings model, Phys. Rev. A 64, 052102 (2001).
[26] X. L. Fan and D. Zhao, On the spaces L^{p(x)}(\Omega) and W^{m,p(x)}(\Omega) , J. Math. Anal. Appl. 263, 424-446 (2001).
[27] X. L. Fan, J. S. Shen and D. Zhao, Sobolev embedding theorems for spaces W^{k,p(x)}(Omega), J. Math. Anal. Appl. 262, 749-760 (2001).
[28] X. L., Fan , Y. Z. Zhao and D. Zhao , Compact imbedding theorems with symmetry of Strauss-Lions type for the space W^{1,p(x)}(Omega), J. Math. Anal. Appl. 255, 333-348 (2001).
[29] X. L. Fan and D. Zhao , The quasi-minimizer of integral functionals with p(x)-growth conditions,Nonlinear Anal. 39, 807-816 (2000).
[30] X. L. Fan and D. Zhao, A class of De Giorgi type and Holder continuity. Nonlinear Anal. 36, 295-318 (1999).