Welcome to our website!

Guo-Feng Zhang

Professor of Institute of Computational Mathematics.

Email:University of Lanzhou, 2001, M

Ph.D.University of Lanzhou, 2001, Mathematics

Biography

Social experience

  • Teaching and guiding the situation of graduate students

  • Project results

  • Research interests

    Numerical Linear and Nonlinear Algebra, Numerical Solution of Partial Differential Equations, Numerical Optimization Methods and Theories

    Publications

  • 1)	L.-D. Liao, G.-F. Zhang*, A note on block diagonal and block triangular preconditioners for complex symmetric linear systems,Numer.Algor., DOI: 10.1007/s11075-018-0520-4
    2)	L.-D. Liao, G.-F. Zhang*, A generalized C-to-R method for solving complex symmetric indefinite linear systems, Linear Multilinear Algebr, DOI: 10.1080/03081087.2018.1469598
    3)	Z.-Z. Liang, G.-F. Zhang*,Parameterized approximate block LU preconditioners for generalized saddle point problems,J. Comput. Appl. Math.,336(2018)281–296
    4)	Z.-Z. Liang, G.-F. Zhang*, Variants of the deteriorated PSS preconditioner for saddle point problems, Comput. Math. Appl., 75 (2018)3024–3046 
    5)	L.-D. Liao, G.-F. Zhang*, Optimizing and improving of the C-to-R method for solving complex symmetric linear systems,Appl. Math. Letters, 82(2018) 79–84 
    6)	Z.-Z. Liang, G.-F. Zhang*,On nonlinear inexact Uzawa algorithms for stabilized saddle point problems,Comput. Appl. Math.,37(2018) 2129–2151
    7)	Z.-Z. Liang, G.-F. Zhang*, Semi-convergence analysis of preconditioned deteriorated PSS iteration method for singular saddle point problems, Numerical Algorithms,Numer Algor,DOI: 10.1007/s11075-017-0380-3
    8)	M.-L. Zeng, G.-F.Zhang, Accelerated SNS and accelerated SSS iteration methods for non-Hermitian linear systems, J. Comput. Anal. Appl., 24(5)2018
    9)	L.-D. Liao, G.-F.Zhang*, New variant of the HSS iteration method for weighted Toeplitz regularized least-squares problems from image restoration, Comput. Math. Appl., 73(2017)2482-2499 
    10)	L.-D. Liao, G.-F. Zhang*,Efficient preconditioner and its iterative method for a class of complex symmetric linear systems,East Asian J. Appl. Math., 7(3)(2017) 530-547 
    11)	Z.-Z. Liang, G.-F. Zhang*,Convergence behavior of generalized parameterized Uzawa method for singular saddle-point problems, J. Comput. Appl. Math.,311(2017)293–305 
    12)	Z.-Z. Liang, G.-F. Zhang*,Analysis of the relaxed deteriorated PSS preconditioner for singular saddle point linear systems, Appl. Math. Comput., 305(2017)308–322
    13)	M.-L. Zeng, G.-F.Zhang*, Generalized shift-splitting iteration method for a class of two-by-two linear systems, J. Appl. Math. Comput., 53(1)(2017) 271-283 
    14)	M.-L.Zeng, G.-F.Zhang*, Parameterized ABD preconditioning technique for time-periodic convection-diffusion problems, Int. J. Comput. Math.,94(2017)4,727-736
    15)	M.-L. Zeng, G.-F. Zhang*, A banded preconditioning iteration method for time-space fractional advection-diffusion equations, Math. Prob. Engineering, 2017(11):1-8
    16)	M.-L. Zeng, G.-F. Zhang, Complex-extrapolated MHSS iteration method for singular complex symmetric linear systems, Numer. Algor., 2017, DOI: 10.1007/s11075-017-0295-z
    17)	M.-L. Zeng, Walker P.S., G.-F. Zhang, On semi-convergence of the parameterized generalized MHSS method for singular complex linear systems, Comput. Math. Appl., 73(2017)1824–1833
    18)	M.-L. Zeng, G.-F. Zhang*,On NPHSS-KPIK iteration method for low-rank complex Sylvester equations arising from time-periodic fractional diffusion equations, TURKISH J. Math., 40(2016)1325 -1339
    19)	L.-D. Liao, G.-F. Zhang*, Preconditioning of complex linear systems  from the Helmholtz equation,  Comput. Math. Appl., 72(2016)2473–2485 
    20)	Z.-Z. Liang, G.-F. Zhang*, Two new variants of the HSS preconditioner for regularized saddle point problems,  Comput. Math. Appl.,72 (2016)603-619 
    21)	Z. Zheng, G.-F. Zhang*,M.-Z.Zhu,A Note on Preconditioners for Complex Linear Systems Arising from PDE-constrained Optimization Problems, Appl. Math. Letters, 61(2016)114-121 
    22)	Z.-Z.Liang, G.-F. Zhang*, Augmented block splitting preconditioner for singular saddle point problems,Appl. Math. Letters, 56 (2016)34–41
    23)	Z.-Z. Liang, G.-F. Zhang*, SIMPLE-like preconditioners for saddle point problems from the steady Navier-Stokes equations,  J. Comput. Appl. Math.,3022016)211-223
    24)	Z.-Z. Liang, G.-F. Zhang*, Variants of the accelerated parameterized inexact Uzawa method for saddle-point  problems, BIT Numer. Math., (2016)56(2)523-542
    25)	Z.-Z. Liang, G.-F. Zhang*, On SSOR iteration method for a class of block  two-by-two linear systems, Numer. Algor., 71(3)(2016)655- 671
    26)	Z. Zheng, G.-F. Zhang*, A block diagonal preconditioner for generalized saddle point problems, East Asian J. Appl. Math.,6(2016)235-252
    27)	M.-L. Zeng, G.-F. Zhang*, Incomplete circulant and skew-circulant splitting iteration method for time- dependent space fractional diffusion equations, Jpn J. Indust. Appl. Math., 33(1)(2016)251 -268 
    28)	M.-L. Zeng,G.-F. Zhang*,A class of preconditioned TGHSS-based iteration methods for weakly nonlinear systems, East Asian J. Appl. Math., 6(4)(2016)367-383
    29)	M.-L. Zeng, G.-F.Zhang*, Z. Zheng, Generalized augmented Lagrangian-SOR iteration method for saddle-point systems arising from distributed control problems, J. Comput. Math., 34(2)(2016) 174–185.
    30)	M.-L. Zeng, G.-F. Zhang*, Parameterized rotated block preconditioning techniques for block two-by-two systems with application to complex linear systems, Comput. Math. Appl., 70(2015) 2946–2957
    31)	M.-Z. Zhu, G.-F. Zhang*, Z.-Z.Liang,  On generalized local Hermitian and skew-Hermitian  splitting iterative method for block two-by-two linear systems, Appl. Math. Comput., 250(2015)463-478
    32)	M.-L.Zeng,G.-F. Zhang*, Preconditioning optimal control of the unsteady Burgers equations with H_1 regularized term,  Appl. Math. Comput., 254(2015)133–147
    33)	Z. Zheng, G.-F. Zhang*, M.-Z.Zhu, A block alternating splitting iteration method  for a class of block two-by-two complex  linear systems, J. Comput. Appl. Math.,  288(2015)203–214 
    34)	Z.-Z. Liang, G.-F. Zhang*, Semi-convergence analysis of the GPIU method for singular nonsymmetric saddle-point problems, Numer. Algor., 70(2015)151-169
    35)	Z.-Z. Liang, G.-F. Zhang*, On PSS-based constraint  preconditioners for singular nonsymmetric saddle point problems, Comput. Math. Appl., 69(2015)455–465
    36)	G.-F.Zhang, L.-D. Liao, Z.-Z. Liang, On parameterized generalized skew-Hermitian triangular splitting iteration methods for singular and nonsingular saddle point problems, Appl. Math. Comput.,254 (2015)340–359 
    37)	Z.-Z. Liang,G.-F.Zhang*, PU-STS method for non-Hermitian saddle-point problems, Appl. Math.Letters,46 (2015)1–6 
    38)	A.-L. Yang, G.-F. Zhang, Y.-J. Wu, General constraint preconditioning iteration method for singular saddle-point problems,  J. Comput. Appl. Math., 282(2015)157–166 
    39)	M.-L.Zeng, G.-F.Zhang*,Modulus-based GSTS iteration method for linear complementarity problems, J. Math. Study, 48(1)(2015)1-17 
    40)	M.-Z. Zhu, G.-F.Zhang*, A class of iteration methods based on the HSS for Toeplitz systems of weakly nonlinear equations, J.Comput. Appl. Math., 290 (2015) 433–444 
    41)	M.-Z. Zhu, G.-F.Zhang*, Z. Zheng, Z.-Z. Liang, On HSS-based  sequential two-stage method for non-Hermitian saddle point    problems,  Appl. Math. Comput.242 (2014) 907–916
    42)	G.-F. Zhang, Z. Zheng,A parameterized splitting iteration method for complex symmetric linear systems,  Jpn. J. Ind. Appl. Math. 31 (2014)265–278 
    43)	M.-L. Zeng,G.-F. Zhang*, A new preconditioning strategy  for solving a class of  time-dependent PDE-constrained optimization problems, J. Comput. Math. 32 (2014) 215–232
    44)	Z.-Z. Liang, G.-F.Zhang*, Modified unsymmetric SOR method for saddle point problems, Appl. Math. Comput., 234(2014)584-598   
    45)	Z.-Z. Liang, G.-F. Zhang*, On semi-convergence of a class of Uzawa methods for singular saddle-point problems, Appl. Math. Comput., 247 (2014) 397–409
    46)	G.-F. Zhang, J.-L.Yang,S.-S.Wang, On generalized parameterized inexact Uzawa method for block two-by-two linear system, J. Comput. Appl. Math. 255(2014)193–207  
    47)	S.-S. Wang,G.-F.Zhang*, Preconditioned AHSS iteration method for singular saddle point problems,Numer. Algor., 63 (2013) 521–535
    48)	G.-F. Zhang, S.-S. Wang, A generalization of parameterized inexact Uzawa method for singular saddle point problems,Appl. Math. Comput., 219 (2013)4225–4231 
    49)	G.-F. Zhang, Z. Zheng, Block symmetric and block lower-triangular preconditioners for PDE-constrained optimization problems, J. Comput. Math., 31 (2013)370–381 
    50)	Z.-Z.Liang, G.-F.Zhang*, On block-diagonally preconditioned accelerated parameterized inexact Uzawa method for singular saddle point problems,Appl. Math. Comput.,221(2013)89–01
    51)	G.-F. Zhang, W.-W. Xie, J.-Y. Zhao,Positive definite solutions of the nonlinear matrix equation  $X+A^{\ast}X^{q}A=Q  (q>0)$, Appl. Math. Comput. 217 (2011)9182–9188 
    52)	G.-F. Zhang, Z.-R. Ren, J.-Y. Zhao, HSS-like nonsymmetric preconditioner for saddle point problems, Numer. Algor., 57(2)(2011)273-287 
    53)	M.-Z. Zhu,G.-F. Zhang,On CSCS-based iteration methods for Toeplitz system of weakly nonlinear equations,J. Comput. Appl. Math., 235 (2011) 5095-5104
    54)	D.-P. Li, J.-Y. Zhao, G.-F.Zhang, An efficient numerical method for preconditioned saddle point problems, Appl. Math. Comput., 217 (2011)5596–5602 
    55)	G.-F. Zhang, J.-Y. Zhao,On Constraint Preconditioners for Generalized Saddle Point Matrices, Appl. Math. Comput., 216 (2010)  1837–1844
    56)	Y.-Y.Zhou, G.-F. Zhang,  A generalization of parameterized inexact Uzawa method for generalized saddle point problems, Appl. Math. Comput., 215(2009)599-607
    57)	Zhang G.-F., Zhang Y, Ding, H.-f.,New family of eighth-order methods for nonlinear equation, COMPEL, 28 (2009) 1418–1427
    58)	G.-F. Zhang, Q.-H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 219 (2008)1, 51–58.
    59)	Zhang Guofeng, Stabilities of (A,B,C) and NPDIRK methods for systems of neural delay-differential equations with multiple delays,  J. Comput. Math., 21(2003)3,375-382 
    60)	Zhang Guofeng, Stability of implicit one-block methods for delay differential equations, Appl. Numer. Math. 36 (2001)2-3, 275–279.
    61)	Zhao Shuangsuo, Zhang Guofeng, Two iteration methods for solving linear algebraic systems with low order matrix A and high order matrix B: Y=(A⊗B)Y+Φ,J. Comput. Math. 18(4)(2000)419–430
    62)	Zhang Guofeng, Zhao Shuangsuo,A class of self-adaptive one-block method and its implementation with varying stepsize,Math. Numer. Sin.,22(2000)3, 285-294
    63)	Zhao Shuangsuo, Wang Changyin, Zhang Guofeng, Relation between two sets of functions defined by the two interrelated one-side Lipschitz conditions,J. Comput.Math.,17(1999)5, 457-462 
    64)	Zhao Shuangsuo, Zhang Guofeng, Wang Changyin, The convergence of two Newtow-like methods for solving block nonlinear equations and a class of r-points (r+1)st-order A-stable one-block methods, Appl. Numer. Math., 25(1997)1, 117-133 
    
  • Honor and Award

  • Other information