Welcome to our website!

Zhao-Zheng Liang

Associate professor of Institute of Computational Mathematics.

Email:1311, Qiyun Building

Ph.D.Lanzhou University, 2017, Computing Mathematics

Biography

I received my master’s (2014) and doctor’s (2017) degrees in Computing Mathematics from Lanzhou University, China. From September 2016 till September 2017, I studied as a joint PhD student in Uppsala University, Sweden.

Social experience

  • Teaching and guiding the situation of graduate students

  • Project results

  • Research interests

    My research interest is numerical linear algebraic, including fast iterative solution methods and preconditioning techniques for structured linear systems arising from different application backgrounds, such as PDE-constrained optimal control problems and equivalent real transformation of complex valued linear systems. 

    Publications

  • [1] Z.-Z. Liang, G.-F. Zhang, A class of modified DPSS preconditioners for generalized saddle-point linear systems, Comput. Appl. Math., https://doi.org/10.1007/s40314-019-0844-2, 2019.
    [2] Z.-Z. Liang, G.-F. Zhang, Robust additive block triangular preconditioners for block two-by-two linear systems, Numer. Algorithms, https://doi.org/10.1007/s11075-018-0611-2, 2019.
    [3] O. Axelsson, Z.-Z. Liang, A note on preconditioning methods for time-periodic eddy current optimal control problems, J. Comput. Appl. Math., 352: 262--277, 2019.
    [4] O. Axelsson, M. Neytcheva, Z.-Z. Liang, Parallel solution methods and preconditioners for evolution equations, Math. Model. Anal., 23(2): 287--308, 2018. 
    [5] R.-X. Li, Z.-Z. Liang, G.-F. Zhang, L.-D. Liao, L. Zhang, A note on preconditioner for the Ohta–Kawasaki equation, Appl. Math. Lett., 85: 132--138, 2018.
    [6] Z.-Z. Liang, O. Axelsson, M. Neytcheva, A robust structured preconditioner for time-harmonic parabolic optimal control problems, Numer. Algorithms, 79:575--596, 2018. 
    [7] Z.-Z. Liang, G.-F. Zhang, Parameterized approximate block LU preconditioners for generalized saddle point problems, J. Comput. Appl. Math., 302:211--223, 2018.
    [8] Z.-Z. Liang, G.-F. Zhang. Semi-convergence analysis of preconditioned deteriorated PSS iteration method for singular saddle point problems, Numer. Algorithms., 79(2): 379--404, 2018. 
    [9] Z.-Z. Liang, G.-F. Zhang. On nonlinear inexact Uzawa algorithms for stabilized saddle point problems, Comput. Appl. Math., 37(2): 2129--2151, 2018.
    [10] Z.-Z. Liang, G.-F. Zhang. Variants of the deteriorated PSS preconditioner for saddle point problems, Comput. Math. Appl., 75(8): 3024--3046, 2018. 
    [11] Z.-Z. Liang, G.-F. Zhang. Convergence behavior of generalized parameterized Uzawa method for singular saddle-point problems. J. Comput. Appl. Math., 311:293--305, 2017. 
    [12] Z.-Z. Liang, G.-F. Zhang. Analysis of the relaxed deteriorated PSS preconditioner for singular saddle point linear systems, Appl. Math. Comput., 305: 308--322, 2017. 
    [13] Z.-Z. Liang, G.-F. Zhang. On SSOR iteration method for a class of block two-by-two linear systems, Numer. Algorithms, 71: 655--671, 2016. 
    [14] Z.-Z. Liang, G.-F. Zhang. Augmented block splitting preconditioner for singular saddle point problems, Appl. Math. Lett., 56: 34--41, 2016. 
    [15] Z.-Z. Liang, G.-F. Zhang. Variants of the accelerated parameterized inexact Uzawa method for saddle-point problems, BIT Numer. Math., 56:523--542, 2016. 
    [16] Z.-Z. Liang, G.-F. Zhang. SIMPLE-like preconditioners for saddle point problems from the steady Navier-Stokes equations. J. Comput. Appl. Math., 302:211--223, 2016. 
    [17] Z.-Z. Liang, G.-F. Zhang. Two new variants of the HSS preconditioners for regularized saddle point problems. Comput. Math. Appl., 72 (3): 603--619, 2016. 
    [18] Z.-Z. Liang, G.-F. Zhang. PU-STS method for non-Hermitian saddle-point problems, Appl. Math. Lett., 46: 1--6, 2015.
    [19] Z.-Z. Liang, G.-F. Zhang. On PSS-based constraint preconditioners for singular nonsymmetric saddle point problems, Comput. Math. Appl., 69: 455--465, 2015. 
    [20] Z.-Z. Liang, G.-F. Zhang. Semi-convergence analysis of the GPIU method for singular non- symmetric saddle-point problems, Numer. Algorithms, 70: 151--169, 2015.
    
  • Honor and Award

  • 1. National Scholarship for Doctor Students by Education Ministry of China, Oct. 2015
    2. National Scholarship for Master Students by Education Ministry of China, 2013
    
  • Other information