近五年发表的论文:
1.Y. S. Li, T. Wei, An inverse time-dependent source problem for a time-space fractional diffusion equation, Applied Mathematics and Computation, 336(2018), 257-271.
2.X. B. Yan, T. Wei, Inverse space-dependent source problem for a time-fractional diffusion equation by an adjoint problem approach, Journal of Inverse and Ill-Posed Problems, to appear.
3.T. Wei and Y. S. Li, Identifying a diffusion coefficient in a time-fractional diffusion equation, Mathematics and Computers in Simulation, 151(2018), 77-95.
4.T. Wei, Y. Zhang, The backward problem for a time-fractional diffusion-wave equation, Computers and Mathematics with Applications, to appear.
5.L.L. Sun and T. Wei, Identification of the zeroth-order coefficient in a time fractional diffusion equation, Applied Numerical Mathematics, 111(2017)160–180.
6.T. Wei, J. G. Wang, Determination of Robin coefficient in a fractional diffusion problem, Applied Mathematical Modeling, 40(2016), 7948-7961.
7.T. Wei, L.L. Sun and Y. S. Li, Uniqueness for an inverse space-dependent source term in a multi-dimensional time-fractional diffusion equation, Applied Mathematics Letters, 61 (2016), 108–113.
8.T. Wei, X. L. Li and Y. S. Li, An inverse time-dependent source problem for a time-fractional diffusion equation, Inverse Problems, 32(2016), no. 8, 085003.
9.C. Shi, C. Wang, T. Wei, Convolution regularization method for backward problems of linear parabolic equations, Applied Numerical Mathematics, 108(2016)143–156.
10.T. Wei, Z.Q. Zhang, Robin coefficient identification for a time-fractional diffusion equation, Inverse Problems in Science & Engineering, 24(2016), no.4, 647-666.
11.J. G. Wang and T. Wei, Quasi-reversibility method to identify a space-dependent source for the time-fractional diffusion equation,Applied Mathematical Modeling, 39(2015), 6139-6149.
12.J. G. Wang, T. Wei, Y. B. Zhou,Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation,Journal of Computational and Applied Mathematics,279( 2015), Pages 277–292.
13.C. Shi, C. Wang, G. H. Zheng, T. Wei, A new a posteriori parameter choice strategy for the convolution regularization of the space-fractional backward diffusion problem, Journal of Computational and Applied Mathematics, 279( 2015), Pages 233–248.
14.J. G. Wang and T. Wei, An iteration method on backward time-fractional diffusion problem,Numerical Methods for Partial Differential Equations, 30(2014), 2029-2041.
15.C. S. Shi, C. Wang, T. Wei, Numerical solution for an inverse heat source problem by an iterative method, Applied Mathematics and Computation,244(2014), 577-597.
16.G. H. Zheng and T. Wei, Recover the source and initial value simultaneously in a parabolic equation, Inverse Problems, 30(2014), 065013(35pp).
17.H. W. Zhang, T. Wei, A Fourier truncated regularization method for a Cauchy problem of a semi-linear elliptic equation, Journal of Inverse and Ill-posed Problems. Volume 22, Issue 2, Pages 143–168.
18.H. W. Zhang, T. Wei,Two iterative methods for a Cauchy problem of the elliptic equation with variable coefficients in a strip region, Numerical Algorithms,65(2014), No. 4, 875-892.
19.T. Wei, J. G. Wang, A modified quasi-boundary value method for the backward time-fractional diffusion problem, ESAIM: Mathematical Modelling and Numerical Analysis,M2AN, 48(2), 2014, 603-621.
20.T. Wei and J.G Wang,A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation,Applied Numerical Mathematics, 78(2014), Pages 95–111.
21.T. Wei, Z.Q. Zhang, Stable numerical solution to a Cauchy problem for a time fractional diffusion equation, Engineering Analysis with Boundary Elements,40(2014),128-137.
22.J. G. Wang, T. Wei, Y. B. Zhou, Tikhonov regularization method for a backward problem for the time-fractional diffusion equation,Applied Mathematical Modeling,32(2013),No. 18-19, 8518-8532.
23.Z. Q. Zhang, T. Wei, An optimal regularization method for space-fractional backward diffusion problem,Mathematics and Computers in Simulation,92 (2013), 14–27.
24.J. C. Liu and T. Wei, A quasi-reversibility regularization method for an inverse heat conduction problem without initial data,Applied Mathematics and Computation, Vol. 219(2013), No. 23, 10866–10881.
25.J. G. Wang, Y. B. Zhou, T. Wei, A posteriori regularization parameter choice rule for the quasi-boundary value method for the backward time-fractional diffusion problem, Applied Mathematics Letter. Vol. 26(2013), No. 7, 741-747.
26.J. G. Wang, Y. B. Zhou, T. Wei, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation, Applied Numerical Mathematics,68(2013), 39-57.
27.J. Wen, M. Yamamoto, T. Wei, Simultaneous determination of a heat source and the initial temperature in an inverse heat conduction problem, Inverse Problems in Science & Engineering,Volume 21, Issue 3, pages 485-499,2013.
28.Z. Q. Zhang, T. Wei, Identifying an unknown source in time-fractional diffusion equation by a truncation method, Applied Mathematics and Computation, 219(11), 5972–5983,2013.
29.T. Wei, Y. G. Chen and J. C. Liu, A variational-type method of fundamental solutions for a Cauchy problem of Laplace's equation, Applied Mathematical Modelling, 37(2013), 1039-1053.
T. Wei and Z. Q. Zhang, Reconstruction of a time-dependent source term in a time-fractional diffusion equation, Engineering Analysis with Boundary Elements. 37(2013), 23-31.