[42] Y. F. Luo, J. J. Xie, W. T. Zhang*, Tropical representations of Chinese monoids with and without involution, Semigroup Forum, accepted
[41] W.T. Zhang, B. B. Han, Y.F. Luo*, Finite basis problem for Annular monoids with rotation, J. Algebra Appl., accepted
[40] S. V. Gusev, Y.X Li, W. T. Zhang*, Limit varieties of monoids satisfying a certain identity, Algebra Colloquium, accepted.
[39]M. Gao, W. T. Zhang*, Y.F.Luo, Varieties of involution J-trivial monoids with continuum many subvarieties, Algebra Colloquium, 2024, 31(3): 407-416.
[38] B. B. Han, W. T. Zhang*,Y.F. Luo and J.X. Zhao, Representations and identities of hypoplactic monoids with involution, Commun. Algebra, 2024, 52(3): 1038-1062.
[37]B. B. Han, W. T. Zhang* and Y. F. Luo,Finite basis problem for involution monoids of order five, Bull. Aust. Math. Soc, 2024, 109: 350-364.
[36] B. B. Han, W. T. Zhang*,Y. F. Luo and J. X. Zhao, Representations and identities of Baxter monoids with involution, Semigroup Forum, 2023, 107: 424-458.
[35] D. B. Li, W. T. Zhang*, Y. F. Luo, On certain semigroups of transformations with restricted range, J. Algebra Appl., 2023, 2350143.
[34] B. B. Han, W. T. Zhang*. Finite basis problems for stalactic, taiga, sylvester and baxter monoids. J. Algebra Appl., 2023, 2350204.
[33] B. B. Han, W. T. Zhang*, J. R. Li,Finite basis problem for the variety generated by all monoids of order five, Commun. Algebra, 2023, 51(1), 424-439 .
[32] M. Gao, W. T. Zhang*, Y. F. Luo, Finite basis problem for Catalan monoids with involution,International Journal of Algebra and Computation, 2022, 32(6), 1161-1177.
[31] D. B. Li, W. T. Zhang*, Y. F. Luo, The monoid of orientation-preserving k-extensive transformations, Semigroup Forum, 2022, 104: 376-397.
[30] D. B. Li, W. T. Zhang*, Y. F. Luo, On the monoid of all injective orientation-preserving and extensive partial transformations, Commun. Algebra, 2022, 50(1): 275-286.
[29] D. B. Li, W. T. Zhang*, Y. F. Luo, The monoid of all orientation-preserving and extensive full transformations on a finite chain, J. Algebra Appl., 2022, 2250105.
[28] M. Jackson*, W. T. Zhang, From A to B to Z, Semigroup Forum, 2021, 103: 165-190.
[27] B. Duan, W. T. Zhang*, Y. F. Luo, The classification of maximal inverse monoids of matrices, Semigroup Forum, 2021, 102: 120-133.
[26] M. Gao, W. T. Zhang*, Y. F. Luo, Finite basis problem for Lee monoids with involution, Commun. Algebra, 2021, 49(10): 4258-4273.
[25] B. B. Han, W. T. Zhang*, Y. F. Luo, Equational theories of upper triangular tropical matrix semigroups, Algebra Universalis, 2021, 82(44).
[24] M. Gao, W. T. Zhang*, Y. F. Luo, A non-finitely based involution semigroup of order five, Algebra Universalis, 2020, 81(31).
[23] W. T. Zhang*, Y. F. Luo, N. Wang, Finite basis problem for involution monoids of unitriangular boolean matrices, Algebra Universalis, 2020, 81(7).
[22] W. T. Zhang*, Y. F. Luo, The finite basis problem for involution semigroups of triangular 2×2 matrices, Bull. Aust. Math. Soc, 2020, 101(1): 88-104.
[21] M. Gao, W. T. Zhang*, Y. F. Luo, The monoid of 2×2 triangular boolean matrices under skew transposition is non-finitely based, Semigroup Forum, 2020, 100:153-168.
[20] W. T. Zhang*, Y. D. Ji, Y. F. Luo, The finite basis problem for infinite involution semigroups of triangular 2×2 matrices, Semigroup Forum, 2017, 94: 426-441.
[19] Y. Z. Chen*, W. T. Zhang, A limit monoid variety which is not a limit semigroup variety, Journal of Lanzhou University (Natural Science), 2017, 53(1): 127-130.
[18] W.T.Zhang*, Y.F.Luo, A sufficient condition under which a semigroup is nonfinitely based, Bull. Aust. Math. Soc, 2016, 93(3): 454-466.
[17] E. W. H. Lee, W. T. Zhang*, Finite basis problem for semigroups of order six, LMS J. Comput. Math., 2015, 18(1): 1-129.
[16] J. R. Li, W. T. Zhang, Y. F. Luo*, On the finite basis problem for the variety generated by all n-element semigroups, Algebra Universalis, 2015, 73(3): 225-248.
[15] D. N. Ashikhmin, M. V. Volkov*, W. T. Zhang, The finite basis problem for Kiselman monoids, Demonstratio Mathematica, 2015, 48(4): 475-492.
[14] E. W. H. Lee, W. T. Zhang*, The smallest monoid that generates a non-Cross variety (in Chinese): Journal of Xiamen University(Natural science), 2014, 53(1): 1-4.
[13] W. T. Zhang*, J. R. Li, Y. F. Luo, Hereditarily finitely bsed semigroups of triangular matrices over finite fields, Semigroup Forum, 2013, 86(2): 229-261
[12] W. T. Zhang*, Existence of a new limit variety of aperiodic monoids, Semigroup Forum, 2013, 86(1): 212-220
[11] J. R. Li, W. T. Zhang*, Y. F. Luo, On the finite basis problem for certain 2-limited words, Acta Math.Sinica(English Series), 2013, 29(3): 571-590
[10] W. T. Zhang, J. R. Li, Y. F. Luo*, On the variety generated by the monoid of triangular 2×2 matrices over a two-element field, Bull. Aust. Math. Soc, 2012, 86: 64-77
[9] Y. F. Luo*, W. T. Zhang, Y. Y. Qin, H. L. Hou, Split graphs whose half-strong endomorphisms form a monoid, Sci China Math, 2012, 55(6): 1303-1320
[8] E.W. H. Lee, J. R. Li, W. T. Zhang*, Minimal non-finitely based semigroups, Semigroup Forum, 2012, 85(3): 577-580
[7] W. T. Zhang*, Y. F. Luo, A new example of a minimal nonfinitely based semigroup, Bull. Aust. Math. Soc, 2011, 84(3): 484-491
[6] Y. F. Luo*, W. T. Zhang, On the variety generated by all semigroups of order three, Journal of Algebra, 2011, 334(1): 1-30
[5]W. T. Zhang*, Y. F. Luo, The variety generated by all non-permutative, non-idempotent semigroups of order four, Proceeding of the international conference on algebra, 2010, 10: 721-735
[4] W. T. Zhang*, Subvarieties of the varieties generated by aperiodic commutative semigroups, Journal of Mathematical Research Exposition, 2010, 30(1): 119-126
[3] W. T. Zhang, Y. F. Luo*, The subvariety lattice of the join of two semigroup varieties, Acta Math. Sinica (English Series), 2009, 25(6): 971-982
[2] W. T. Zhang, Y. F. Luo*, The variety generated by a certain transformation monoid, Internat. J. Algebra Comput., 2008, 18: 1193-1201
[1] W. T. Zhang, Y. F. Luo*, On varieties generated by minimal complex semigroups, Order, 2008, 25: 243-266