[1]L.Yang and M.H. Yang, Long-time behavior of stochastic reaction diffusion equation with dynamical boundary condition, Discrete Contin. Dyn. Syst. B, 22(2017),2627-2650.
[2]L.Yang and X. Wang, Dynamics for the non-autonomous Berger equation with nonlinear damping, Elec. J. Differential Equations, 278(2017), 1-14.
[3]L.Yang and Y.M. Zhang,Positive steady states and dynamics for a diffusive predator-prey system with a degeneracy , Acta Mathematica Scientia, 36(2016), 537-548.
[4]L. Yang and X. Wang , On semilinear biharmonic equations with concave-convex nonlinearities involving weight functions, Boundary Value Problems, 117(2014), 1-15.
[5]L.Yang, M.H. Yang and J. Wu, On uniform attractors for non -autonomous p-Laplacian equation with dynamic boundary condition, Topol. Methods Nonlinear Anal., 42(2013), 169-180 .
[6]L.Yang, MH. Yang and P.E. Kloeden, Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamic boundary conditions, Discrete Contin. Dyn. Syst. B, 17(2012), 2635-2651.
[7]L.Yang, Asymptotic regularity and attractors of reaction-diffusion equation with nonlinear boundary condition, Nonlinear Analysis: RWA, 13(2012),1069-1079.
[8].L. Yang and M.H. Yang, Long-time behavior of reaction-diffusion equations with dynamical boundary condition,,Nonlinear Analysis, TMA, 74(2011), 3876–3883。
[9].L. Yang and M.H. Yang, Attractors of non-autonomous reaction-diffusion equation with nonlinear boundary condition,Nonlinear Analysis, RWA,11(2010), 3946-3954。
[10].L. Yang, Uniform attractors for the closed process and applications to the reaction-diffusion equation with dynamical boundary condition, Nonlinear Analysis, TMA, 71 (2009), 4012-4025。
[11].L. Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity, Journal of Mathematical Analysis and Applications, 338 (2008), 1243-1254。
[12].L. Yang and C.K. Zhong, Global attractor for plate equation with nonlinear damping, Nonlinear Analysis, TMA,69 (2008), 3802–3810。
[13].L. Yang, Uniform attractor for non-autonomous hyperbolic equation with critical exponent, Applied Mathematics and Computation, 203 (2008), 895–902。
[14].L. Yang, A perturbation method for numerical differentiation,Applied Mathematics and Computation,199 (2008), 368–374。