聂大鑫,本硕博毕业于兰州大学,研究兴趣包括:非局部偏微分方程的适定性和正则性理论、传统数值算法的构建与分析以及深度学习算法等,目前在SINUM、Numer. Math.、ESAIM: M2AN、J. Sci. Comput.、Chaos等计算及应用数学权威期刊上发表论文20余篇。
1. Nie, D., Sun, J., Deng, W.: Numerical approximation for stochastic nonlinear fractional diffusion equation driven by rough noise. ESAIM: M2AN. 59, 389–418 (2025). https://doi.org/10.1051/m2an/2024080 2. Nie, D., Sun, J., Deng, W.: Numerical methods for forward fractional Feynman–Kac equation. Adv. Comput. Math. 50, 58 (2024). https://doi.org/10.1007/s10444-024-10152-5 3. Nie, D., Sun, J., Deng, W.: Strong convergence order for the scheme of fractional diffusion equation driven by fractional Gaussian noise. SIAM J. Numer. Anal. 60, Accepted (2022). https://doi.org/10.1137/20M1356270 4. Nie, D., Deng, W.: A unified convergence analysis for the fractional diffusion equation driven by fractional Gaussian noise with Hurst index $H\in(0,1)$. SIAM J. Numer. Anal. 60, 1548–1573 (2022). https://doi.org/10.1137/21M1422616 5. Nie, D., Sun, J., Deng, W.: Numerical algorithm for the space-time fractional Fokker-Planck system with two internal states. Numer. Math. 146, 481–511 (2020). https://doi.org/10.1007/s00211-020-01148-6 6. Nie, D., Sun, J., Deng, W.: Numerical scheme for the Fokker-Planck equations describing anomalous diffusions with two internal states. J. Sci. Comput. 83, 33 (2020). https://doi.org/10.1007/s10915-020-01218-9
作者:聂大鑫