1. 教育背景 本科 2002年9月-2006年6月, 兰州大学 硕士 2006年9月-2009年6月, 兰州大学 博士 2009年9月-2012年12月,兰州大学 2. 学术交流 2011年10-2012年10月,博士联合培养,华威大学,英国 3. 工作经历 2013年1月-2017年4月,讲师,兰州大学 2017年5月-,副教授,兰州大学
1) 学术型硕士生及应用统计专业硕士生指导教师; 2) 承担的课程:《数学物理方程》、《偏微分方程数值解法》、《高等数学》、《线性代数》; 3) 已毕业学生:徐博明(学术型硕士);
[21]Zhang, Zhengqiang; Guo, Shimin; Zhang, Yuan-Xiang An iterative method based on Nesterov acceleration for identifying space-dependent source term in a time-fractional diffusion-wave equation. J. Comput. Appl. Math. 429 (2023), Paper No. 115214, 20 pp. [20]Zhang, Zhengqiang; Zhang, Yuan-Xiang A fast iterative method for identifying the radiogenic source for the helium production-diffusion equation. Appl. Math. Sci. Eng. 30 (2022), no. 1, 521–540. [19]Xue, Xuemin; Xiong, Xiangtuan; Zhang, Yuanxiang Two fractional regularization methods for identifying the radiogenic source of the helium production-diffusion equation. AIMS Math. 6 (2021), no. 10, 11425–11448. [18]Yan, X. B.; Zhang, Y. X.; Wei, T. Identify the fractional order and diffusion coefficient in a fractional diffusion wave equation. J. Comput. Appl. Math. 393 (2021), Paper No. 113497, 18 pp. [17]Zhang, Yun; Wei, Ting; Zhang, Yuan-Xiang Simultaneous inversion of two initial values for a time-fractional diffusion-wave equation. Numer. Methods Partial Differential Equations 37 (2021), no. 1, 24–43. [16] Yuan-Xiang Zhang, Junxiong Jia, Liang Yan. Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation. Inverse Problems, 2018, 34(12): 125002. [15] Liang Yan, Yuan-Xiang Zhang. Convergence analysis of surrogate-base methods for Bayesian inverse problems. Inverse Problems, 33(2017), No.12, 125001, 20pp. [14] Yuan-Xiang Zhang, Liang Yan. The general a-posteriori truncation method and its application to radiogenic source identification for the Helium production-diffusion equation, Appl. Math. Model. 43 (2017), 126–138. [13] Chu-Li Fu, Yun-Jie Ma, Yuan-Xiang Zhang, Fan Yang. A simple a-posteriori regularization method for solving the Cauchy problem for the Helmholtz equation with non-homogeneous Neumann data. Appl. Math. Model. 39 (2015), no. 14, 4103–4120. [12] Sergios Agapiou, Andrew M. Stuart, Yuan-Xiang Zhang. Bayesian posterior contraction rates for linear severely ill-posed inverse problems. J. Inverse Ill-Posed Probl. 22 (2014), no. 3, 297–321. [11] Yuan-Xiang Zhang, Chu-Li Fu, Yun-Jie Ma. An a-posteriori parameter choice rule for truncation regularization for solving backward parabolic problems. J. Comput. Appl. Math. 255 (2014), 150–160. [10] Hao Cheng, Chu-Li Fu, Yuan-Xiang Zhang. An iteration method for stable analytic continuation. Appl. Math. Comput. 233 (2014), 203–213. [ 9 ] Yuan-Xiang Zhang, Chu-Li Fu, Zhi-Liang Deng. An a-posteriori truncation method for some Cauchy problems associated with Helmholtz-type equation. Inverse Probl. Sci. Eng. 21 (2013), no. 7, 1151–1168. [ 8 ] Chu-Li Fu, Yun-Jie Ma, Hao Cheng, Yuan-Xiang Zhang. The a posteriori Fourier method for solving the Cauchy problem for the Laplace equation with nonhomogeneous Neumann data, Applied Mathematical Modelling. Appl. Math. Model. 37 (2013), no. 14-15, 7764–7777. [ 7 ] Chu-Li Fu, Yuan-Xiang Zhang, Hao Cheng, Yun-Jie Ma. The a-posteriori Fourier method for solving ill-posed problems. Inverse Problems 28 (2012), no. 9, 095002, 26 pp. [ 6 ] Chu-Li Fu, Yuan-Xiang Zhang, Hao Cheng, Yun-Jie Ma. Numerical analytic continuation on bounded domains. Eng. Anal. Bound. Elem. 36 (2012), no. 4, 493–504. [ 5 ] Yun-Jie Ma, Chu-Li Fu, Yuan-Xiang Zhang. Identification of un unknown source depending on both time and space variables by a variational method. Appl. Math. Model. 36 (2012), no. 10, 5080–5090. [ 4 ] Yun-Jie Ma, Chu-Li Fu, Yuan-Xiang Zhang. Solving a backward heat conduction problem by variational method. Appl. Math. Comput. 219 (2012), no. 2, 624–634. [ 3 ] Yuan-Xiang Zhang, Chu-Li Fu, Liang Yan. Approximate inverse method for stable analytic continuation in a strip domain. J. Comput. Appl. Math. 235 (2011), no. 9, 2979–2992. [ 2 ] Zhi-Liang Deng, Chu-Li Fu, Xiao-Li Feng, Yuan-Xiang Zhang. A mollification regularization method for stable analytic continuation. Math. Comput. Simulation 81 (2011), no. 8, 1593–1608. [ 1 ] Yuan-Xiang Zhang, Chu-Li Fu, Zhi-Liang Deng. A conditional stability result for backward heat equation. (Chinese) J. Lanzhou Univ. Nat. Sci. 44 (2008), no. 2, 100–102.
国家自然科学青年基金,基于贝叶斯观点的分数阶扩散方程反问题研究,11501270,2016年1月-2018年12月,主持; 国家自然科学面上项目,分数阶扩散波方程反问题的理论及正则化方法研究,11771192,2018年1月-2021年12月,参加; 国家自然科学面上项目,不适定问题非经典正则化方法有关问题研究,11171136,2012年1月-2015年12月,参加。
作者:张远祥