欢迎进入兰州大学数学与统计学院

张远祥

兰州大学数学与统计学院     副教授   张远祥

研究方向
偏微分方程反问题;数据同化;贝叶斯推断;深度学习;
个人简历
1.  教育背景
        本科    2002年9月-2006年6月, 兰州大学
        硕士    2006年9月-2009年6月, 兰州大学
        博士    2009年9月-2012年12月,兰州大学

2.  学术交流
        2011年10-2012年10月,博士联合培养,华威大学,英国

3.  工作经历
        2013年1月-2017年4月,讲师,兰州大学
        2017年5月-,副教授,兰州大学
教学及指导学生情况
1) 学术型硕士生及应用统计专业硕士生指导教师;
2) 承担的课程:《数学物理方程》、《偏微分方程数值解法》、《高等数学》、《线性代数》;
3) 已毕业学生:徐博明(学术型硕士);
发表论文及专著
[21]Zhang, Zhengqiang; Guo, Shimin; Zhang, Yuan-Xiang An iterative method based on Nesterov acceleration for identifying space-dependent source term in a time-fractional diffusion-wave equation. J. Comput. Appl. Math. 429 (2023), Paper No. 115214, 20 pp.
[20]Zhang, Zhengqiang; Zhang, Yuan-Xiang A fast iterative method for identifying the radiogenic source for the helium production-diffusion equation. Appl. Math. Sci. Eng. 30 (2022), no. 1, 521–540.
[19]Xue, Xuemin; Xiong, Xiangtuan; Zhang, Yuanxiang Two fractional regularization methods for identifying the radiogenic source of the helium production-diffusion equation. AIMS Math. 6 (2021), no. 10, 11425–11448.
[18]Yan, X. B.; Zhang, Y. X.; Wei, T. Identify the fractional order and diffusion coefficient in a fractional diffusion wave equation. J. Comput. Appl. Math. 393 (2021), Paper No. 113497, 18 pp.
[17]Zhang, Yun; Wei, Ting; Zhang, Yuan-Xiang Simultaneous inversion of two initial values for a time-fractional diffusion-wave equation. Numer. Methods Partial Differential Equations 37 (2021), no. 1, 24–43.
[16] Yuan-Xiang Zhang, Junxiong Jia, Liang Yan. Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation. Inverse Problems, 2018, 34(12): 125002.
[15] Liang Yan, Yuan-Xiang Zhang. Convergence analysis of surrogate-base methods for Bayesian inverse problems. Inverse Problems, 33(2017), No.12, 125001, 20pp. 
[14] Yuan-Xiang Zhang, Liang Yan. The general a-posteriori truncation method and its application to radiogenic source identification for the Helium production-diffusion equation, Appl. Math. Model. 43 (2017), 126–138. 
[13] Chu-Li Fu, Yun-Jie Ma, Yuan-Xiang Zhang, Fan Yang. A simple a-posteriori regularization method for solving the Cauchy problem for the Helmholtz equation with non-homogeneous Neumann data. Appl. Math. Model. 39 (2015), no. 14, 4103–4120. 
[12] Sergios Agapiou, Andrew M. Stuart, Yuan-Xiang Zhang. Bayesian posterior contraction rates for linear severely ill-posed inverse problems. J. Inverse Ill-Posed Probl. 22 (2014), no. 3, 297–321. 
[11] Yuan-Xiang Zhang, Chu-Li Fu, Yun-Jie Ma. An a-posteriori parameter choice rule for truncation regularization for solving backward parabolic problems. J. Comput. Appl. Math. 255 (2014), 150–160. 
[10] Hao Cheng, Chu-Li Fu, Yuan-Xiang Zhang. An iteration method for stable analytic continuation. Appl. Math. Comput. 233 (2014), 203–213. 
[ 9 ] Yuan-Xiang Zhang, Chu-Li Fu, Zhi-Liang Deng. An a-posteriori truncation method for some Cauchy problems associated with Helmholtz-type equation. Inverse Probl. Sci. Eng. 21 (2013), no. 7, 1151–1168. 
[ 8 ] Chu-Li Fu, Yun-Jie Ma, Hao Cheng, Yuan-Xiang Zhang. The a posteriori Fourier method for solving the Cauchy problem for the Laplace equation with nonhomogeneous Neumann data, Applied Mathematical Modelling. Appl. Math. Model. 37 (2013), no. 14-15, 7764–7777. 
[ 7 ] Chu-Li Fu, Yuan-Xiang Zhang, Hao Cheng, Yun-Jie Ma. The a-posteriori Fourier method for solving ill-posed problems.  Inverse Problems 28 (2012), no. 9, 095002, 26 pp. 
[ 6 ] Chu-Li Fu, Yuan-Xiang Zhang, Hao Cheng, Yun-Jie Ma. Numerical analytic continuation on bounded domains.  Eng. Anal. Bound. Elem. 36 (2012), no. 4, 493–504. 
[ 5 ] Yun-Jie Ma, Chu-Li Fu, Yuan-Xiang Zhang. Identification of un unknown source depending on both time and space variables by a variational method.  Appl. Math. Model. 36 (2012), no. 10, 5080–5090. 
[ 4 ] Yun-Jie Ma, Chu-Li Fu, Yuan-Xiang Zhang. Solving a backward heat conduction problem by variational method.  Appl. Math. Comput. 219 (2012), no. 2, 624–634. 
[ 3 ] Yuan-Xiang Zhang, Chu-Li Fu, Liang Yan. Approximate inverse method for stable analytic continuation in a strip domain. J. Comput. Appl. Math. 235 (2011), no. 9, 2979–2992. 
[ 2 ] Zhi-Liang Deng, Chu-Li Fu, Xiao-Li Feng, Yuan-Xiang Zhang. A mollification regularization method for stable analytic continuation.  Math. Comput. Simulation 81 (2011), no. 8, 1593–1608. 
[ 1 ] Yuan-Xiang Zhang, Chu-Li Fu, Zhi-Liang Deng. A conditional stability result for backward heat equation. (Chinese) J. Lanzhou Univ. Nat. Sci. 44 (2008), no. 2, 100–102.
项目成果
        国家自然科学青年基金,基于贝叶斯观点的分数阶扩散方程反问题研究,11501270,2016年1月-2018年12月,主持;
        国家自然科学面上项目,分数阶扩散波方程反问题的理论及正则化方法研究,11771192,2018年1月-2021年12月,参加;
        国家自然科学面上项目,不适定问题非经典正则化方法有关问题研究,11171136,2012年1月-2015年12月,参加。
荣誉、获奖
2016年,  高教社杯全国大学生数学建模竞赛本科组二等奖(指导教师);
2014年-2015年,  兰州大学“优秀班主任”;
社会工作
其它信息

作者:张远祥