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A B S T R A C T   

As crucial carbon (C) and energy sources for soil microorganisms, neutral sugars are essential component of the 
labile soil organic carbon (SOC) pool derived from plants and microorganisms and can directly affect the 
accumulation of SOC. However, the changes in labile SOC components with elevated soil nitrogen (N) and 
phosphorus (P) inputs remain unclear. Taking advantage of a 10-year field N and P addition experiment in an 
alpine grassland on the Tibetan Plateau, we analyzed the compositions and concentrations of neutral sugar in 
plant versus soil, coupled with soil nutrient properties and plant biomass, we assessed factors affecting the 
preservation of neutral sugars in soil. We found that the concentrations of neutral sugar were lower in plant 
shoots than those in roots. The concentrations of neutral sugar and the GM/AX ratio (GM: galactose and 
mannose; AX: arabinose and xylose) in shoots and roots were insensitive to nutrient addition. The concentrations 
of neutral sugar in the topsoil were significantly lower than those in the subsoil, and both significantly decreased 
with N alone and P alone addition. The GM/AX ratio was significantly higher in the topsoil than that in the 
subsoil and both increased with nutrient addition (except for NP addition in the topsoil). Additionally, SOC was 
negatively correlated with soil neutral sugar concentrations but positively correlated with the GM/AX ratio. This 
result emphasizes the important role of microbial transformation of neutral sugars in regulating the relative 
magnitude of the labile SOC pool versus the stable SOC pool, which is consistent with the concept of “microbial 
carbon pump” (MCP). This study demonstrates differential compositions and concentrations, as well as responses 
of neutral sugars to N and P addition in plant versus soil, providing new information to understand the effect of 
nutrient addition on the SOC pool in the plant-soil system.   

1. Introduction 

Carbon (C) is more abundant in soil than in the combined atmo-
sphere and vegetation, making soil the world's largest C reservoir (IPCC, 
2014; Lehmann and Kleber, 2015). Even slight changes in this consid-
erable soil organic carbon (SOC) stock would trigger intense terrestrial 
C-climate feedback (Jackson et al., 2017; Lehmann and Kleber, 2015; 
Wang et al., 2022a). As an important C sink that can affect global 
change, research on SOC stocks and the corresponding accumulation 

mechanisms has always been a hot concern (Bai and Cotrufo, 2022; 
Blonska et al., 2021; Li et al., 2021; Qi et al., 2016). 

The SOC consists of a variety of components from different sources 
with varied chemical structures and stability, and the mean residence 
time ranges from days to years and millennia (Schmidt et al., 2011). 
Plants and microorganisms are vital contributors to SOC (Gunina and 
Kuzyakov, 2015; Kögel-Knabner, 2002). Plant is the primary source of 
SOC, which can continuously provide fresh organic matter to soil; some 
of them either serve as C substrates or are directly preserved in soil as 
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plant-derived compounds (Gunina and Kuzyakov, 2015). On the other 
hand, microorganisms are crucial drivers of SOC transformation, which 
convert plant-derived C into microbial C and accumulate in soil (Cotrufo 
et al., 2013; Liang et al., 2017). Previous studies on SOC accumulation 
have focused on stable plant- and microbial-derived SOC components 
and a growing body of evidence suggests that microbial necromass is 
important for SOC formation and accumulation (Liang et al., 2017; Zhu 
et al., 2020). Recent studies have confirmed that microbial necromass 
accounts for as much as >50 % of SOC in temperate agricultural (55.6 
%) and grassland (61.8 %) soil (Bai and Cotrufo, 2022; Liang et al., 
2020). It has been claimed that SOC formation is dominated by micro-
organisms with a “microbial carbon pump” (MCP), which is involved in 
two concurrent microbial metabolic pathways: ex vivo (extracellular) 
modification and in vivo pathways (Liang et al., 2017; Zheng et al., 
2021). For ex vivo modification, microorganisms break down or modify 
macromolecules generated from plant by secreting extracellular en-
zymes, resulting in the build-up of plant-derived C in soil (Cui et al., 
2016; Liang et al., 2017). Through in vivo turnover, small-molecular 
weight and labile plant-derived compounds undergo a microbial 
uptake-growth-death cycle and are ultimately incorporated into soil as 
microbial necromass and byproducts. Both pathways highlight the 
crucial role of microbial catabolism and anabolism in the transformation 
and sequestration of soil C. Under the contemporary understanding, the 
degradation or transformation of labile C components in plant can be 
described as a mechanistic “front gate” related to stabilizing SOC for-
mation (Cui et al., 2016). Collectively, elucidating the dynamics of labile 
C may underpin the alterations and persistence of SOC stocks, which can 
provide a novel perspective to better understand the global C cycle. 

Neutral sugars, also known as non-cellulosic carbohydrates, are 
primarily generated by plants and microorganisms and constitute 5–25 
% of the total SOC (Cui et al., 2016; Feng, 2022; Kögel-Knabner, 2002; 
Zhang et al., 2021). They typically consist of 8 monosaccharides: xylose, 
arabinose, ribose, glucose, galactose, mannose, rhamnose, and fucose 
(Gunina and Kuzyakov, 2015; Kögel-Knabner, 2002). Pentose arabinose 
(A) and xylose (X) are exclusively produced by plants, whereas hexose 
galactose (G) and mannose (M) are derived mainly from microbes (Angst 
et al., 2021; Gunina and Kuzyakov, 2015; Oades, 1984). Hence, the 
hexose-to-pentose ratio GM/AX is usually used to estimate the relative 
contribution of microorganisms and plants to neutral sugars, which can 
more widely represent the degree of microbial transformation of labile 
SOC (Cui et al., 2016; Gunina and Kuzyakov, 2015; Oades, 1984; Xie 
et al., 2014). Therefore, it also serves as an indicator for evaluating the 
status of the accumulated SOC (Cui et al., 2016; Murata et al., 1999). 
Investigating the compositions and concentrations of neutral sugar is an 
effective approach for better understanding labile C pool and SOC 
sequestration. 

Under current climate change, atmospheric nitrogen (N) and phos-
phorus (P) deposition have significantly increased since the industrial 
revolution, and consequently, their availability in soil has increased 
(Galloway et al., 2008; Pan et al., 2021; Wang et al., 2017). The N and P 
are essential nutrients that limit plant growth and microbial function in 
most ecosystems (Elser et al., 2007; Wieder et al., 2015). Numerous 
studies have shown that plant and microbial communities are sensitive 
to additional N and P inputs into the soil (Chen et al., 2014; Chen et al., 
2022b; Han et al., 2019; Jeske et al., 2018). Enriched N and P enhance 
plant production, reduce plant diversity, and alter plant biosynthetic 
processes (Gao et al., 2019; Henning et al., 2021; Yoneyama et al., 
2012). Similarly, it has been reported that additional N and P inputs 
affect microbial communities in terms of population abundance, species 
diversity, and functional activity (Ma et al., 2020; Sun et al., 2015; Wang 
et al., 2018b; Yang et al., 2022). The effects of N and P addition on 
microbial growth, composition, and enzyme activity vary, being neutral, 
stimulated, or suppressed (Jing et al., 2016; Liu et al., 2012; Wang et al., 
2018a; Wang et al., 2008; Xiao et al., 2018; Zhang et al., 2018). The 
complex responses of plants and microorganisms to N and P addition 
make the compositions and concentrations of SOC components 

unpredictable. Hence, it is crucial to probe the compositions and con-
centrations of neutral sugar with increasing N and P inputs to better 
understand the transformation and accumulation patterns of labile and 
stable SOC. 

The Tibetan Plateau has been a net C sink, which stores 73.6 Pg C in 
the upper 3 m of soil (Chen et al., 2022a). In recent years, intensive 
human activities have enhanced the input of N and P in the alpine 
grasslands of the Tibetan Plateau (Chen et al., 2022a; Wang et al., 
2022b). Increased N and P inputs to soil may exert significant impacts on 
C cycling in fragile Tibetan Plateau ecosystems (Liu et al., 2018; Wang 
et al., 2012). Thus, we conducted a 10-year N and P addition field 
experiment in an alpine grassland on the Tibetan Plateau to quantify the 
effect of N and P addition on the labile SOC pool. The objectives of this 
study were to (1) investigate the effects of N and P addition on the 
compositions and concentrations of neutral sugar in plant and soil and 
(2) assess the factors influencing the concentrations of neutral sugar in 
soil by combining plant biomass and soil nutrient properties with N and 
P addition. We hypothesized that (1) decreased concentrations of 
neutral sugar in plant with nutrient addition, (2) unchanged concen-
trations of neutral sugar in soil with nutrient addition due to enhanced 
growth of both plants and microorganisms, but increased the GM/AX 
ratio with nutrient addition due to increased microbial transformation, 
and (3) more concentrated neutral sugars with a lower GM/AX ratio 
accumulates in the topsoil than in the subsoil owing to direct plant in-
puts to the topsoil. 

2. Materials and methods 

2.1. Study area 

The experiment was carried out on a typical alpine grassland at the 
Haibei Alpine Grassland Ecosystem Research Station (37◦29′–37◦45′ N, 
101◦12′–101◦23′ E; 3220 m above sea level), which is located northeast 
of the Tibetan Plateau in Qinghai Province, China. The research station 
experiences a typical continental monsoon climate, with an average 
annual temperature of − 1.1 ◦C and annual precipitation of 480 mm, 80 
% of which occurs during the growing season from May to September. 
The soil is classified as a Mat-Gryic Cambisol with a clay loam texture 
(IUSS Working Group WRB, 2007). In the experimental site, the basic 
soil properties (at the depth of 10 cm) are: total C, 78.2 g kg− 1; organic 
carbon (OC), 63.1 g kg− 1; N, 5.75 g kg− 1; P, 0.79 g kg− 1; clay content, 
65.3 %; bulk density, 0.75 g cm− 3; pH, 7.85. The dominant native plant 
community consists of Elymus nutans, Stipa aliena, and Gentiana strami-
nea (Ma et al., 2017). 

2.2. Experimental design 

The N and P addition experiment on the Tibetan Plateau was 
established in May 2011, and N and P addition has been carried out so 
far. The field experiment was conducted using a randomized complete 
block design, with 6 blocks and 6 treatments. The treatments included 
no addition (CK, Control), 3 levels of N addition (N1, 25 kg ha− 1 yr− 1; 
N2, 50 kg ha− 1 yr− 1; and N, 100 kg ha− 1 yr− 1), P addition (P, 50 kg ha− 1 

yr− 1), and combined N and P addition (NP, 100 kg N ha− 1 yr− 1 plus 50 
kg P ha− 1 yr− 1). Six blocks were set for each treatment as replicates with 
36 plots (6 m × 6 m). To avoid interference, there were 1 m and 2 m 
buffer strips between the plots and blocks, respectively. At the beginning 
of June, July, and August, N fertilizer (urea) and P fertilizer (triple su-
perphosphate) were separated into three equal portions and manually 
applied to the ground surface after sunset under conditions of high 
moisture levels and low temperature. 

2.3. Plant sampling and analysis 

Plants were sampled on 25–26 August 2020, during the peak 
growing season. For plant aboveground biomass, shoots were clipped at 
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the ground level in one randomly selected 25 × 25 cm quadrat within 6 
treatments of 6 blocks (6 replicates, 36 plots in total), and each quadrat 
was collected once and sorted into species. Correspondingly, plant roots 
(mixed) were obtained from each soil layer at 10 cm intervals between 
0 and 30 cm, using a root drill with a diameter of 7 cm. Finally, the 
above- and belowground plant samples were oven-dried at 65 ◦C until 
they reached constant weight. 

Plant samples from CK, N, P, and NP in 3 blocks were used for sub-
sequent analysis. The mixed roots from each treatment were selected 
from 3 blocks (3 replicates). For plant shoots, the dominant 9 species 
that contributed 80 % of the total aboveground biomass were first 
identified and then separated from the corresponding treatment. Finally, 
8 species in the CK, 7 species in the N, 8 species in the P, and 5 species in 
the NP were selected from the 3 blocks. The plant shoots of a single 
species from 3 blocks of the corresponding treatment were mixed. We 
then classified the shoots into grasses, sedges, legumes, and forbs, based 
on plant functional groups (Fig. S1). 

The concentrations of OC and total nitrogen (TN) in plant were 
measured using an elemental analyzer (Elementar vario EL cube, Ger-
many). The TP of plant was extracted by digestion of samples in H2SO4- 
HClO4 and analyzed using an intermittent chemical analyzer (AMS 
Smarchem450, Italy). 

2.4. Soil sampling and analysis 

Soil samples from the 6 treatments in 6 blocks (6 replicates, 36 plots 
in total) were collected on 24 August 2020. Four treatments (CK, N, P, 
and NP) and 3 blocks (3 replicates each) were selected for this study. For 
each studied plot (4 treatments, 3 replicates, 12 plots in total), 3 soil 
cores were obtained from the top- (0–10 cm) and subsoils (20–30 cm). 
Following the removal of grass roots and stones, the soil samples were 
mixed completely to create one composite sample for the top- and 
subsoils and then passed through a 2-mm sieve. The sieved soil samples 
were then immediately transported to the laboratory on ice and freeze- 
dried in vacuum for further analysis. 

The concentrations of OC and TN in soil were measured using an 
elemental analyzer (Elementar vario EL cube, Germany), with inorganic 
C eliminated using 1 M hydrochloric acid before SOC determination. 
The soil total P (TP) was extracted by digestion of samples in H2SO4- 
HClO4 and analyzed using an intermittent chemical analyzer (AMS 
Smarchem450, Italy). 

2.5. Extraction and analysis of neutral sugars 

Neutral sugars were extracted using a modified procedure, based on 
the methods described by Amelung et al. (1996) and Liu et al. (2019). 
Briefly, samples containing approximately 4 mg of OC were hydrolyzed 
using 10 mL of 4 M trifluoroacetic acid (TFA) at 105 ◦C for 4 h. Then, the 
mixture was evaporated to dryness at 45 ◦C using a rotary evaporator 
after 100 μg adonitol was introduced as the quantitative internal stan-
dard. The residue was dissolved in ultrapure water and centrifuged at 
3000 rpm for 10 min after using potassium hydroxide and TFA to obtain 
a pH of 6.6–6.8, after which the supernatant was dried once more with a 
rotary evaporator. After removing the added anhydrous methanol under 
a stream of N2, 1 mL of ultrapure water and 100 μg of myo-inositol 
(recovery of the internal standard) were added. These ingredients 
were then transferred to 3 mL of Reacti-Vial™ and freeze-dried for at 
least 8 h. The freeze-dried sample was added with 300 μL derivative 
reagent (32 mg mL− 1 hydroxylamine hydrochloride, 40 mg mL− 1 4- 
dimethylamino-pyridine in 4:1 (v/v) pyridine-methanol) and heated 
for 30 min at 75 ◦C. After the sample was cooled, 1 mL of acetic anhy-
dride was added, and the mixture was heated for 20 min at 75 ◦C. The 
phase was separated with 1.5 mL dichloromethane once the derivati-
zation was completed. Furthermore, 1 mL of hydrochloric acid and 1 mL 
of ultrapure water were successively added to remove impurities and 
extract the excess derivative reagents completely. 

Neutral sugars were determined using gas chromatography (GC) 
coupled to a single quadrupole mass spectrometer (Shimadzu QP2020, 
Japan) with a DB-5 fused silica capillary column (30 m × 0.25 mm ×
0.25 μm). The GC temperature program was as follows: a column tem-
perature of 100 ◦C was first kept for 3 min, after which it was increased 
by 3 ◦C/min to 230 ◦C for 2 min and then by 8 ◦C/min to 300 ◦C for 5 
min. Adonitol served as the internal standard for the GC measurements 
of neutral sugars, which included 8 monosaccharides in one sample. 
They can be divided into pentose (arabinose, xylose, and ribose) and 
hexose (glucose, galactose, mannose, rhamnose, and fucose). Analytical 
errors of recovery efficiency were typically <15 % based on repeated 
analyses of the plant and soil samples. The concentrations of neutral 
sugar were determined as the sum of 8 monosaccharides. The hexose-to- 
pentose ratio GM/AX (GM: sum of galactose and mannose; AX: sum of 
arabinose and xylose) was calculated. 

2.6. Statistical analysis 

Before statistical analysis, all data sets were tested for normality 
using the Shapiro-Wilk test. If normality was not observed, as in most 
cases, non-parametric analysis was performed. Two-way analysis of 
variance (ANOVA) was used to test the effects of nutrient addition and 
plant organs or soil depths on concentrations of neutral sugar and the 
GM/AX ratio, with treatments, plant organs, or soil depths as indepen-
dent variables. The effects of nutrient addition on plant properties, 
concentrations of neutral sugar, and the GM/AX ratio in plant shoots and 
roots were examined using a one-way ANOVA. Similarly, the effects of 
nutrient addition on soil properties, concentrations of neutral sugar, and 
the GM/AX ratio in the top- and subsoils were examined using a one-way 
ANOVA. Duncan's multiple range test (DMRT) was used to examine the 
variations among nutrient addition treatments. When the homogeneity 
of variances was unequal, Tamhan's T2 was used to assess the variations 
among the nutrient addition treatments. The differences in the con-
centrations of neutral sugar between plant shoots and roots or topsoil 
and subsoil and the differences in neutral sugars between pentose and 
hexose for each plant functional group were examined using the t-test or 
Mann-Whitney U test. Additionally, the block effects on soil and plant 
root parameters were considered, and the results showed that the block 
effects were not significant for the soil and plant root variables (p >
0.05). All statistical analyses were performed using SPSS 24.0 (IBM SPSS 
Statistics 24.0, Chicago, IL). 

Pearson's correlation was performed to examine the effect of plant 
biomass (above- and belowground) and soil nutrient properties on 
concentrations of soil neutral sugar and the GM/AX ratio with R soft-
ware (version 4.1.3). Soil nutrient properties (TN was excluded because 
of its strong collinearity with SOC) showing significant correlations with 
the investigated parameters were selected for multiple stepwise 
regression to further elucidate the most important factors using SPSS 
24.0 (IBM SPSS Statistics 24.0, Chicago, IL). Pearson's correlation and 
multiple stepwise regression analyses were performed using log10- 
transformed data. The significance level was set at 0.05 for all statisti-
cal methods. 

3. Results 

3.1. Plant biomass and nutrient properties 

The belowground biomass (1123.2 ± 157.7 g m− 2) was 3.4 times 
higher than that of aboveground biomass (334.4 ± 37.0 g m− 2; Fig. 1). 
Compared with CK, the aboveground biomass increased with NP addi-
tion (p < 0.05); however, the belowground biomass decreased with N 
alone and NP addition (p < 0.05; Fig. 1). 

For plant shoots, the concentrations of OC decreased with N alone 
addition but increased with P alone addition (p < 0.05; Table 1). The 
concentrations of TN increased with N alone and NP addition and the 
concentrations of TP increased with P alone and NP addition (p < 0.05). 
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Additionally, opposite changes were observed between the OC and TN: 
TP ratio, TN and OC:TN ratio, and TP and OC:TP ratio with the corre-
sponding treatments mentioned above. For plant roots, the concentra-
tions of OC, TN, and the OC:TN ratio did not respond significantly to 
nutrient addition. The concentrations of TP and the TN:TP ratio in roots 
showed a consistently increasing trend, whereas the OC:TP ratio showed 
a decreasing trend with N alone and NP addition (Table 1). 

3.2. Soil nutrient properties 

In the topsoil, compared with CK, the concentrations of SOC were 
higher with N alone and NP addition (p < 0.05), but no distinct change 
was found with P alone addition (p > 0.05; Table 1). There were no 
changes in TN and the SOC:TN ratio in response to N and P addition (p >
0.05). With the addition of P alone or NP, the concentrations of TP 
increased (p < 0.05). The SOC:TP and TN:TP ratios both decreased by 
21.1–27.2 % with the addition of N alone and 67.7–71.9 % with the 
addition of P alone and NP (p < 0.05; Table 1). In the subsoil, nutrient 
addition did not affect the aforementioned parameters (p > 0.05; 

Table 1). 

3.3. Neutral sugars in plant 

The concentrations of neutral sugar in plant shoots and roots were 
453.1 ± 28.2 mg g− 1 OC on average, with no significant responses to 
different nutrient addition (Fig. 2a). In comparison, the concentrations 
of neutral sugar were higher in plant roots than those in shoots (p < 0.05; 
Fig. 2a). Among these, xylose was the most abundant neutral sugar 
monosaccharide, followed by glucose in shoots, arabinose in roots, and 
then galactose in shoots and roots, which together accounted for >90 % 
of the neutral sugars in shoots and roots (Fig. 3). The concentrations of 
the 8 neutral sugar monosaccharides showed no marked differences 
with N and P addition (p > 0.05), nor did those of pentose and hexose (p 
> 0.05; Fig. 3). The GM/AX ratio was 0.33 ± 0.05 in shoots and 0.27 ±
0.03 in roots on average (Fig. 2b). No difference was found between the 
plant shoots and roots, and no significant difference was found in the 
GM/AX ratio among the different treatments (Fig. 2b). Furthermore, 
neutral sugars in plant were investigated based on plant functional 
groups, including the concentrations of neutral sugar and the GM/AX 
ratio in plant shoots (Fig. S1). 

3.4. Neutral sugars in soil 

The concentrations of neutral sugar in the topsoil were 169.5 ± 21.8 
mg g− 1 SOC on average, lower than those in the subsoil (496.1 ± 43.0 
mg g− 1 SOC; p < 0.05; Fig. 5a). Compared with CK, the concentrations of 
neutral sugar decreased notably with N alone and P alone addition (p <
0.05), whereas no difference was found with NP addition in both the top- 
and subsoils (p > 0.05; Fig. 4a). Furthermore, the concentrations of 
monosaccharides all notably decreased with the addition of N alone and 
P alone (except glucose in the subsoil), showing trends consistent with 
the total concentrations of neutral sugar (p < 0.05; Fig. 5). Among the 
neutral sugar monosaccharides, glucose (30.0 %) was the most abun-
dant, followed by galactose (19.6 %) and mannose (15.5 %) (Fig. 5). 
Consequently, hexose accounted for 75.8 ± 1.0 % and 68.3 ± 1.5 % of 
the total concentrations of neutral sugar in the top- and subsoils, 
respectively (p < 0.05; Fig. 5). The GM/AX ratio in soil (1.5 ± 0.08; 
Fig. 4b) was higher than that in plant (0.3 ± 0.04; Fig. 2b), with higher 
values in the topsoil (1.8 ± 0.10) than in the subsoil (1.3 ± 0.06; p <
0.05; Fig. 4b). Compared with CK, the GM/AX ratio was higher with 
nutrient addition (p < 0.05, except for the NP treatment in the topsoil; 

Fig. 1. Effects of N and P addition on above- and belowground biomass. Bars 
indicate mean ± SE (n = 3). Bars with different capital letters indicate signif-
icant differences between above- and belowground biomass (p < 0.05). Bars 
with different lowercase letters indicate significant differences among nutrient 
addition treatments (p < 0.05). 

Table 1 
Concentrations of organic carbon (OC), total nitrogen (TN), total phosphorus (TP), and the ratio of OC:TN, OC:TP, TN:TP in plant and soil. Mean and standard errors 
are shown.  

Sample Treatment OC (mg g− 1) TN (mg g− 1) TP (mg g− 1) OC:TN OC:TP TN:TP 

Plant 
Shoot CK (n = 8) 385.2 ± 9.7 b 17.2 ± 1.3 c 4.8 ± 0.4 b 23.3 ± 1.7 a 83.4 ± 8.5 a 3.6 ± 0.4 b 

N (n = 7) 357.2 ± 5.1 c 25.2 ± 1.3 a 4.8 ± 0.4 b 14.5 ± 0.8 c 76.5 ± 5.7 ab 5.4 ± 0.4 a 
P (n = 8) 410.7 ± 2.4 a 18.7 ± 1.6 bc 8.1 ± 0.7 a 22.9 ± 1.8 ab 52. 6 ± 3.7 bc 2.2 ± 0.2 c 
NP (n = 5) 397.9 ± 14.5 ab 22.6 ± 1.7 ab 7.6 ± 0.3 a 18.2 ± 1.8 bc 52.8 ± 3.9 c 2.9 ± 0.1 bc 

Root CK (n = 3) 326.4 ± 59.7 10.8 ± 1.9 ab 3.5 31.1 ± 6.6 121.2 2.7 
N (n = 3) 309.6 ± 35.7 12.0 ± 1.7 ab 3.7 (+7.9 %) 26.0 ± 1.7 82.2 (− 32.2 %) 3.1 (+12.6 %) 
P (n = 3) 270.0 ± 91.4 6.2 ± 0.6 b n.a. 42.4 ± 11.8 n.a. n.a. 
NP (n = 3) 397.2 ± 4.5 15.4 ± 2.5 a 6.5 (+88.2 %) 27.0 ± 3.8 60.6 (− 50.0 %) 3.1 (+14.1 %)  

Soil (n = 3) 
Topsoil (0–10 cm) CK 62.3 ± 3.8 b 5.5 ± 0.3 ab 0.3 ± 0.04 c 11.3 ± 0.2 211.6 ± 14.3 a 18.8 ± 1.5 a 

N 73.3 ± 0.8 a 6.0 ± 0.2 ab 0.4 ± 0.02 c 12.2 ± 0.5 167.0 ± 9.4 b 13.7 ± 0.2 b 
P 58.1 ± 3.4 b 5.1 ± 0.3 b 0.9 ± 0.07 b 11.3 ± 0.3 68.3 ± 4.5 c 6.0 ± 0.2 c 
NP 74.8 ± 4.3 a 6.2 ± 0.4 a 1.2 ± 0.07 a 12.0 ± 0.2 63.5 ± 1.3 c 5.3 ± 0.2 c 

Subsoil (20–30 cm) CK 28.9 ± 2.8 3.0 ± 0.2 0.6 ± 0.03 9.5 ± 0.4 48.7 ± 6.7 5.1 ± 0.5 
N 27.4 ± 0.9 2.9 ± 0.1 0.6 ± 0.02 9.6 ± 0.3 45.5 ± 1.9 4.8 ± 0.4 
P 31.3 ± 4.7 3.1 ± 0.5 0.6 ± 0.08 10.1 ± 0.1 53.8 ± 6.4 5.3 ± 0.6 
NP 28.6 ± 0.3 2.9 ± 0.1 0.6 ± 0.04 9.9 ± 0.4 45.5 ± 5.2 4.7 ± 0.7 

CK, control; N, N-alone addition; P, P-alone addition; NP, N and P together addition. n.a., not available. 
Different lowercase letters indicate significant differences among nutrient addition treatments (p < 0.05). 
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Fig. 4b). 

3.5. Factors affecting concentrations of neutral sugar in soil 

Pearson's correlation analysis was conducted to determine whether 
the concentrations of neutral sugar in soil were driven by plant biomass 
or soil nutrient properties (Fig. 6). The results showed no correlation 
between above- or belowground biomass and the concentrations of 
neutral sugar, pentose, hexose, or GM/AX ratio (p > 0.05; Fig. 6). In 
comparison, the concentrations of SOC and TN and the SOC:TN, SOC:TP, 
and TN:TP ratios were all negatively correlated with the concentrations 
of neutral sugar, pentose, and hexose in soil (p < 0.05; Fig. 6). The 
concentrations of SOC and TN and the ratios of SOC:TN and SOC:TP 
were positively correlated with the GM/AX ratio (p < 0.05; Fig. 6). An 
additional multiple stepwise regression analysis confirmed that SOC was 
the most important factor affecting the concentrations of neutral sugar, 
pentose, and hexose in soil (R2 = 0.68, 0.66, and 0.69, respectively), 
whereas the SOC:TN ratio was the dominant factor affecting the GM/AX 
ratio (R2 = 0.44; p < 0.05; Table 2). 

4. Discussion 

4.1. Effects of N and P addition on compositions and concentrations of 
neutral sugar in plant 

Plant contributes a large proportion to neutral sugars in soil; how-
ever, there have been few studies on the concentrations of neutral sugar 
in plant in an alpine grassland on the Tibetan Plateau (Guan et al., 
2018). We found the concentrations of neutral sugar in plant were 413.5 
± 25.9 mg g− 1 OC in shoots and 545.3 ± 66.6 mg g− 1 OC in roots on 
average, respectively (Fig. 2). The concentrations of neutral sugar in 
shoots and roots were close to those in shoots of herbs (437.5 ± 4.6 mg 
g− 1 OC) and in roots of Picea abies (494 mg g− 1 OC) in the Bavarian 
Limestone Alps, respectively (Prietzel et al., 2013). On average, the GM/ 
AX ratio was 0.33 ± 0.05 in shoots and 0.27 ± 0.03 in roots (Fig. 2b). 
The GM/AX ratio in plant indicates the compositions of plant neutral 
sugar and can affect the compositions of neutral sugar in soil. In other 
words, the high GM/AX ratio in soil may be induced by high concen-
trations of hexose in plant but not by the high contribution of micro-
organisms (Gunina and Kuzyakov, 2015). We found that the GM/AX 
ratio in shoots and roots was lower than that in herbs (0.41–0.52) and 
trees (0.37–1.48) in an alpine grassland and a tropical and subtropical 
forest, respectively (Cui et al., 2016; Guan et al., 2018), but was close to 
that in trees (0.21–0.60) in German forests with a continental climate 
(Spielvogel et al., 2007). The differences in the GM/AX ratio of plant 
suggest that considering the GM/AX ratio in plant is important when 
applied to different treatments and ecosystems. Additionally, we eval-
uated the differences in neutral sugars in shoots among plant functional 
groups, the details of which are presented in the Supplementary Material 
(Fig. S1). These results appended a database on plant neutral sugar 
compositions and concentrations in the alpine grassland on the Tibetan 
Plateau and provided a reference for further studies exploring the labile 
C component in soil. 

Continuous 10-year N and P addition did not significantly change the 
compositions and concentrations of neutral sugar in plant shoots and 
roots (Figs. 2–3). As neutral sugars can act as structural compounds that 
link cellulose and lignin, they can sustain plant shape and form a barrier 
for plant cell walls through the cell wall matrix (Du et al., 2022; Kögel- 
Knabner, 2002; Scheller and Ulvskov, 2010). When the external envi-
ronment changes, neutral sugar synthesis is regulated to maintain 
physiological functions (Fernandes et al., 2013; Zhu et al., 2012). Kaa-
kinen et al. (2004) found that concentrations of neutral sugar in hy-
droponic spruce seedlings decreased with a 6-month higher N addition, 
owing to the deposition of neutral sugars in plant secondary cell wall. 
Plant has evolved strategies to respond to changing environments and 
guarantee their growth and development to survive and reproduce (Ding 
et al., 2019; Gong et al., 2020). The similar concentrations of neutral 
sugar in response to nutrient addition in plant in this study indicated 
that the synthesis of plant cell walls was not affected, which may be the 
consequence of plant adaptation to 10-year N and P addition, but further 
verification is required. The vegetation in the studied alpine grassland is 
dominated by perennials (Ma et al., 2017), their roots could survive in 
soil for more than two years, and the 10 years of continuous nutrient 
addition seemed to be periodic fluctuations for plant accompanied by 
growth rhythm. Therefore, inconsistent with our first hypothesis, the 
concentrations of neutral sugar did not change with N and P addition. 

4.2. Effects of N and P addition on compositions and concentrations of 
neutral sugar in soil 

Inconsistent with our second hypothesis, we found that the concen-
trations of neutral sugar significantly decreased with N alone and P 
alone addition in the top- and subsoils (Fig. 4a). N and P are considered 
the most important limiting elements for plant (Hou et al., 2020; 
LeBauer and Treseder, 2008; Vitousek and Howarth, 1991), especially in 
the Tibetan Plateau (Liu et al., 2018). In the concept of stoichiometry, 

Fig. 2. Effects of N and P addition on neutral sugar concentrations (a) and GM/ 
AX ratio (b) in plant shoots and roots. The effects of plant organs (O; shoots and 
roots), nutrient addition treatments (T), and their interaction (O × T) are 
shown. Bars indicate mean ± SE (shoots: n = 8 in CK and P treatments, n = 7 in 
N treatment, n = 5 in NP treatment; roots: n = 3). Bars with different capital 
letters indicate significant differences between shoots and roots. The absence of 
letters on the error bars indicates no significant differences among the nutrient 
addition treatments. n.s., not significant. GM/AX: (galactose and mannose)/ 
(arabinose and xylose). CK, control; N, N alone addition; P, P alone addition; 
and NP, N and P together addition. 
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when only the two nutrients are considered, the nutrient limitation is 
simply a result of the relative demand for one nutrient versus another 
(Agren et al., 2012; Čapek et al., 2018). It has been proved that the N 
alone addition can aggravate P limitation (Li et al., 2016), and prompt 
soil microorganisms to consume more C from neutral sugars to obtain 
enough energy (Cui et al., 2016; Smemo et al., 2021). A similar expla-
nation can be applied to the P alone addition (He and Dijkstra, 2015; 
Vitousek et al., 2010; Zhan et al., 2017). The insignificant changes in the 
concentrations of neutral sugar with NP addition confirmed our inter-
pretation. It is worth mentioning that the concentrations of neutral sugar 
decreased more in the subsoil when N and P were added alone (Fig. 4a). 
This may be caused by the high nutrient requirement and strong C 
limitation of microorganisms in the subsoil (indicated by the low con-
centrations of TN, TP, and OC:TN ratio in the subsoil; Table 1). In 
addition, the GM/AX ratio can be used to determine the extent of the 
microbial conversion of plant-derived neutral sugars (Cui et al., 2016; 
Gunina and Kuzyakov, 2015). We also found a consistently increasing 
GM/AX ratio with nutrient addition in both the top- and subsoils, sug-
gesting that nutrient addition could enhance the microbial trans-
formation of labile SOC components. Neutral sugars can quickly 
compensate for the additional C and energy demands caused by 

stimulated microbial activities and nutrient demands with N and P 
addition (Cui et al., 2016; Gunina and Kuzyakov, 2015; Kirkby et al., 
2013; Waldrop and Firestone, 2004). Therefore, all nutrient amend-
ments increased the microbial transformation of plant-derived pentose 
to microbial-derived hexose, resulting in a higher GM/AX ratio. 

On average, the concentrations of neutral sugar were 169.5 ± 21.8 
mg g− 1 SOC in the topsoil and 496.1 ± 43.0 mg g− 1 SOC in the subsoil, 
indicating it was more concentrated in the subsoil, but the GM/AX ratio 
was lower in the subsoil than in the topsoil (p < 0.05; Fig. 4). This result 
was opposite to our last hypothesis and those who observed an increased 
proportion of hexose with soil depth across various ecosystems (Cui 
et al., 2016; Folsom et al., 1974; Jia et al., 2022; Spielvogel et al., 2007). 
They attributed the increased relative hexose proportion to an abun-
dance of incompletely decomposed plant litter in the topsoil (Folsom 
et al., 1974; Jia et al., 2022) or the preferential stabilization of 
microbial-derived neutral sugars by mineral interactions or incorpora-
tion into aggregates in the subsoil (Kiem and Kögel-Knabner, 2003; 
Rumpel et al., 2010). However, we detected a lower OC:TN ratio (p <
0.05; Table 1) and lower microbial biomass (Ma et al., 2023) in the 
subsoil, accompanied by a constant low temperature, which would 
jointly constrain microbial degradation and transformation of neutral 

Fig. 3. Effects of N and P addition on neutral sugar monosaccharide concentrations in plant shoots and roots. The effects of plant organs (O; shoots and roots), 
nutrient addition treatments (T), and their interaction (O × T) are shown. Bars indicate mean ± SE (Shoots: n = 8 in CK and P treatments, n = 7 in N treatment, n = 5 
in NP treatment; Roots: n = 3). The absence of letters on the error bars indicates no significant differences among the nutrient addition treatments. n.s., not sig-
nificant. CK, control; N, N alone addition; P, P alone addition; and NP, N and P together addition. 

Fig. 4. Effects of N and P addition on neutral 
sugar concentrations (a) and the GM/AX ratio 
(b) in the top- and subsoils. The effects of soil 
depths (D), nutrient addition treatments (T), and 
their interactions (D × T) are shown. Bars indi-
cate mean ± SE (n = 3). Bars with different 
capital letters indicate significant differences 
between the top- and subsoil (p < 0.05). Bars 
with different lowercase letters indicate signifi-
cant differences among nutrient addition treat-
ments. n.s., not significant. GM/AX: (galactose 
and mannose)/(arabinose and xylose). CK, con-
trol; N, N alone addition; P, P alone addition; NP, 
and N and P together addition.   
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sugars (Amelung et al., 1999; Zhao et al., 2021). Therefore, the con-
centrations of neutral sugar were higher in the subsoil with a decreased 
proportion of hexose in the alpine grassland of the Tibetan Plateau. A 
lower GM/AX ratio also occurs in the subsoil of permafrost (Dao et al., 
2022). This discrepancy embodied the divergence in microbial degra-
dation preferences in various ecosystems with diverse climatic and 
nutrient conditions. 

4.3. Potential driving factors for neutral sugar concentrations in soil 

We found that the concentrations of neutral sugar, pentose, hexose, 
and the GM/AX ratio in soil were not significantly correlated with either 
aboveground biomass or belowground biomass (Fig. 6). These results 
are contrary to those of a previous study that concluded the dominant 
role of aboveground biomass in determining the concentrations of 
neutral sugar in soil in an unfertilized forest ecosystem (Zaher et al., 
2020). They attributed this to the inaccessibility of neutral sugars to 
microbial degradation in soil (Zaher et al., 2020). However, in our study, 
the significantly increased GM/AX ratio in both the top- and subsoils 
after 10-year N and P addition highlighted enhanced microbial trans-
formation and degradation in both the top- and subsoils (Fig. 4b). 

The concentrations of neutral sugar, pentose, and hexose in soil were 
negatively correlated with SOC, TN, SOC:TN, SOC:TP, and TN:TP ratios 
(except pentose with TN:TP ratio), but the GM/AX ratio was positively 
correlated with SOC, TN, and SOC:TN ratio (p < 0.05; Fig. 6). Micro-
organisms are thought to transform plant-derived labile C into chemi-
cally or physically stable compounds by interacting with soil minerals 
(Liang et al., 2017; Spielvogel et al., 2007). Thus, SOC concentration 

increased with a decrease in neutral sugars and an increase in the GM/ 
AX ratio (Fig. 6). This result emphasizes the important role of the mi-
crobial transformation of neutral sugars in regulating the relative 
magnitude of the labile SOC pool versus the stable SOC pool, which is 
consistent with the concept of MCP. Under the concept of MCP, a 
considerable proportion of the stable SOC pool is converted from labile 
SOC pool, and this conversion is largely driven by soil microorganisms 
(Liang et al., 2017; Zheng et al., 2021; Zhu et al., 2020). Hence, the 
mechanisms regulating microbial transformation and accumulation of 
neutral sugars in soil with increased atmospheric N and P deposition 
warrant further investigation. 

5. Conclusions 

Our research on the compositions and concentrations of neutral 
sugar in plant and their responses to N and P addition expands the scant 
information on plant neutral sugars in the alpine grassland of the Ti-
betan Plateau. We speculated that the constant compositions of neutral 
sugar in shoots and roots may be a result of plant adaption, but more 
thorough research is required to support this view. In contrast to plant, 
the significant response of neutral sugars in soil highlights the important 
role of microbial transformation, rather than plant property, in regu-
lating the compositions and concentrations of labile SOC. In addition, 
our findings indicates that labile SOC components are a transition SOC 
pool for synthesizing stable SOC pool through microbial conversion and 
transformation. By tracking the correlation between neutral sugars and 
SOC in the context of N and P addition over longer time scales, our 
findings may contribute to predicting variations in SOC from the 

Fig. 5. Effects of N and P addition on neutral sugar monosaccharide concentrations in the top- and subsoils. The effects of soil depths (D), nutrient addition 
treatments (T), and their interactions (D × T) are shown. Bars indicate mean ± SE (n = 3). Bars with different lowercase letters indicate significant differences among 
the nutrient addition treatments (p < 0.05). n.s., not significant. CK, control; N, N alone addition; P, P alone addition; and NP, N and P together addition. 
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perspective of neutral sugars. This makes it feasible to precisely predict 
long-term SOC sequestration under increasing N and P inputs. 
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