
Temporal variability in the thermal requirements
for vegetation phenology on the Tibetan plateau
and its implications for carbon dynamics

Zhenong Jin1
& Qianlai Zhuang1,2

& Jeffrey S. Dukes3,4 &

Jin-Sheng He5,6 & Andrei P. Sokolov7 & Min Chen1
&

Tonglin Zhang8 & Tianxiang Luo9

Received: 11 October 2015 /Accepted: 3 July 2016
# Springer Science+Business Media Dordrecht 2016

Abstract Static thermal requirements (Treq) are widely used to model the timing of phenology,
yet may significantly bias phenological projections under future warming conditions, since
recent studies argue that climate warming will increase Treq for triggering vegetation phenol-
ogy. This study investigates the temporal trend and inter-annual variation of Treq derived from
satellite-based spring and autumn phenology for the alpine and temperate vegetation on the
Tibetan Plateau from 1982 to 2011. While we detected persistent warming in both spring and
autumn across this time period, we did not find a corresponding long-term increase in Treq for
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most of the study area. Instead, we found a substantial interannual variability of Treq that could
be largely explained by interannual variations in other climatic factors. Specifically, the
number of chilling days and fall temperature were robust variables for predicting the dynamics
of Treq for spring onset and autumn senescence, respectively. Phenology models incorporating
a dynamic Treq algorithm performed slightly better than those with static Treq values in
reproducing phenology derived from SPOT-VGT NDVI data. To assess the degree to which
Treq variation affects large-scale phenology and carbon cycling projections, we compared the
output from versions of the Terrestrial Ecosystem Model that incorporated static and dynamic
Treq values in their phenology algorithms. Under two contrasting future climate scenarios, the
dynamic Treq setting reduced the projected growing season length by up to 1–3 weeks by the
late twenty-first century, leading to a maximum reduction of 8.9 % in annual net primary
production and ~15 % in cumulative net ecosystem production for this region. Our study
reveals that temporal dynamics of Treq meaningfully affect the carbon dynamics on the Tibetan
Plateau, and should thus be considered in future ecosystem carbon modeling.

1 Introduction

The term Bphenology^ refers to the timing of recurring biological phases, such as the unfolding
of leaves in spring and senescence in the autumn (Linderholm 2006). During the past few
decades, phenological events in temperate zones have generally advanced in spring and
postponed in autumn in response to the land surface warming and changing precipitation
regimes (Linderholm 2006; Jeong et al. 2012). Altered phenology will in turn feed back to the
global climate system (Penuelas and Filella 2009), since plant phenology is a fundamental
regulator of the annual rhythms of carbon, water and energy exchanges between the land
surface and the atmosphere (Jeong et al. 2012; Cleland et al. 2012; Richardson et al. 2013).
Improving the modeling of phenological events is therefore an important step in reducing the
uncertainty in projections made by ecosystem models (Richardson et al. 2012).

Large-scale phenology is often simulated by process-based models that explicitly describe
known or assumed cause–effect relationships between phenological processes and driving
environmental factors (Jeong et al. 2012; Richardson et al. 2013). Temperature has long been
recognized as the most important factor in determining the timing of vegetation onset,
development and senescence (Körner 2007). The fulfillment of a thermal requirement (Treq),
by reaching either a specified value of a moving average temperature or a cumulative heat sum
(i.e. sum of growing degree days, GDD), will trigger a phenological event in these models. For
many biomes, Treq can be used to predict phenology because low temperatures limit cell
division, cell enlargement, or cell differentiation, and hence the formation of new plant tissue
(Körner 2007). Yet spatial and temporal patterns of Treq values are not well understood, which
has hindered the development of phenology modeling as Treq values directly determine the
simulated start and end of the growing season. Misrepresenting phenology requirements in
models can dramatically skew the simulated start/end of the growing season, and hence the
quantification of terrestrial ecosystem carbon budgets (Jeong et al. 2012; Richardson et al.
2012).

Spatially, Treq is often treated as a species- or plant functional type (PFT)-specific param-
eter, resulting in use of a single value across a large geographic area (Sitch et al. 2003; Krinner
et al. 2005; Richardson et al. 2012). Several recent studies have shown that substantial
variations in Treq exist on continental, regional and even local spatial scales (Eccel et al.
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2009; Piao et al. 2011; Shen et al. 2012; Fu et al. 2014). This spatial heterogeneity is likely
because plant communities can adjust to the local climate (Körner 2007) through genetic
evolution, local adaptation or fast species turnover. Consequently, vegetation in warmer
areas requires higher thermal thresholds for the onset of growth and senescence compared
to vegetation in cooler areas (Eccel et al. 2009; Bennie et al. 2010; Piao et al. 2011; Shen
et al. 2012). However, such adaptation mechanisms are rarely captured in ecosystem
models (but see ORCHIDEE, in which Treq for C3 grasses at a given place is linearly
interpolated between 185 °Cd and 400 °Cd based on the multiannual mean temperature
(Krinner et al. 2005)).

The temporal dynamics of Treq have received even less attention. Assuming that space-for-
time substitution applies, one might then expect that Treq values will increase over time as
mean temperatures warm. For example, Piao et al. (2011) argued that 1 °C of warming would
increase the thermal threshold for vegetation green-up by about 0.8 °C on the Tibetan Plateau
(TP). However, the rates of Treqchanges in response to warming vary across different vegeta-
tion types in China’s temperate zone (Shen et al. 2012). If Treq co-varies with climatic changes
in a similar way to what Shen et al. (2012) showed across space, we would expect plant
phenology to become less sensitive to warming as thermal requirements change (Eccel et al.
2009). In that case, the use of static thresholds for predicting future phenology would become
unreliable, because the thresholds will increasingly overestimate the temperature sensitivity of
phenological responses. Research that characterizes the rates and consequences of Treq dy-
namics under a changing climate can thus reduce uncertainty in phenology modeling and
improve terrestrial carbon quantification.

In this study, we further investigated the temporal trend and climate-dependency of Treq for
alpine and temperate ecosystems on the TP (Fig. 1a), by analyzing the temporal trend of Treq
derived from satellite-derived vegetation phenology. We chose the TP as our study area for
three reasons. First, plants in this area are primarily constrained by temperature and highly
sensitive to regional warming (Piao et al. 2011). Second, a consistent spatial pattern of higher
Treq for places with higher mean annual temperature exists (Fig. S1), making the TP well suited
for studying temporal dynamics in Treq. Finally, major ecosystems on the TP are important to
the current and future regional carbon balance (Zhuang et al. 2010; Piao et al. 2012). To
examine the sensitivity of phenology and carbon cycling predictions to temporal dynam-
ics in Treq for the TP during the twenty-first century, we implemented a dynamic Treq
algorithm into the Terrestrial Ecosystem Model (TEM), and compared outputs from the
default and modified TEM to identify the consequences of the dynamic algorithm for
projections of regional net primary production (NPP) and net ecosystem production
(NEP) during the twenty-first century.

2 Materials and methods

2.1 Phenology and thermal threshold

We derived phenological metrics such as start and end of growing seasons (SOS/EOS) for
alpine ecosystems on the TP (Fig. 1) from the third generation Global Inventory Monitoring
and Modeling System (GIMMS) normalized difference vegetation index (NDVI) data (Tucker
et al. 2005) for years 1982–1999, and the NDVI product of Système Pour L’Observation de la
Terre (SPOT) 4 and 5 satellites for years 2000–2011. We did not use the GIMMS NDVI3g
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data for the whole study period, because it has been criticized for low data quality at this region
during the most recent decade (Zhang et al. 2013). The biweekly GIMMS NDVI3g data has
a spatial resolution of 8 km × 8 km. The SPOT NDVI data has an original spatial
resolution of 1 km × 1 km, but was aggregated into 8 km × 8 km for consistency. The
effects of satellite change, sensor degradation and atmospheric contaminations have been
removed from the raw data of both satellites following standard preprocessing

Fig. 1 Study area information: a Vegetation map of the Tibetan Plateau, redrawn from the Vegetation Map of
China (Chinese Academy of Science 2001). b Simulated annual net primary production (NPP) with units of g C
m−2 year−1 during the 2000s
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procedures (Maisongrande et al. 2004; Tucker et al. 2005). To further reduce the data
noise, we removed all pixels with mean annual NDVI values less than 0.1, which were
considered as snow cover, water body, bare soil, or extremely sparse vegetation (Piao
et al. 2011). Pixels labeled as Bothers^ in the vegetation map were masked out (Fig. 1a).
We also applied the Savitzky-Golay Filter with a window length of 5 to the NDVI time
series as a way of denoising.

To determine the date of vegetation onset and senescence for each pixel, we first fitted a
polynomial equation to the multi-year averaged NDVI time series to get the seasonal curve
following Piao et al. (2011). From the seasonal curve, we calculated the NDVI threshold for
spring onset and autumn senescence following (Yu et al. 2010):

NDVI threshold ¼ NDVImin þ NDVImax−NDVImin½ � � NDVI ratio ð1Þ

where NDVImin is the average of February and March rather than the minimum of the seasonal
curve; NDVImax is the annual maximum; NDVIratio is 0.2 for SOS and 0.6 for EOS. The
derived NDVIthreshold was then used to determine SOS and EOS for each year. We randomly
subset 10 % of the SPOT NDVI data and left out for validating the new phenology algorithm
(see section 2.4).

Treq for spring onset was calculated using the GDD method:

GDD ¼
X sos

t0
max T−Tbase; 0ð Þ ð2Þ

in which t0 and Tbase are the starting date and base temperature for GDD accumulation,
respectively. Here, t0 was prescribed as January 1st and Tbase was 0 °C. It should be
noted that both 0 °C and 5 °C are widely used for Tbase when calculating GDD (Eccel
et al. 2009; Jeong et al. 2013; Fu et al. 2014; Shen et al. 2015), but our preliminary
analysis showed that 5 °C failed to capture the GDD signal on the central and western
parts of the TP. In addition, we calculated 7-day retrospective moving average soil
temperature (Tsoil7) for SOS as another measure of Treq, given that soil temperature
has been well recognized as a stable thermal indicator for alpine ecophysiology (Körner
and Paulsen 2004; Körner 2007; Jin et al. 2013). Treq for EOS was only calculated in
forms of Tsoil7.

2.2 TEM and soil temperature simulation

Soil temperature at 10 cm depth was simulated by TEM model at a spatial resolution of
8 km × 8 km for the TP from 1982 to 2011. TEM is a process-based ecosystem model
designed to make daily or monthly estimations of carbon and nitrogen fluxes and pool
sizes of the terrestrial biosphere by using spatially referenced information on climate,
topography, soils and vegetation (Zhuang et al. 2010). The version of TEM we used here
is coupled with a soil thermal model (STM) that simulates daily soil temperatures at
different depths (Zhuang et al. 2001), and has been verified extensively to give reason-
able estimation of soil temperature and permafrost dynamics in alpine and high latitude
regions (Zhuang et al. 2001; Tang and Zhuang 2011; Jin et al. 2013). Zhuang et al.
(2010) parameterized TEM for major ecosystems on the TP, and examined the effect of
permafrost dynamics on carbon cycling for the past century. The same version was later
applied by Jin et al. (2013) to investigate the relationship between soil temperature and
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vegetation phenology on the TP. More detailed model description and information on
data preparation was given in Methods S1.

2.3 Trend and partial correlations

We calculated the historical trend in Treq of both SOS and EOS at each pixel for three periods,
namely, 1981–2011, 1981–1999 and 2000–2011. Our preliminary analysis showed that the
historical trend was similar between certain vegetation types (i.e. forest and shrub, steppe and
desert, meadow and alpine cushion). Therefore, we aggregated forest and shrub as Bwood^,
which is characterized by having aboveground buds during the dormant season; aggregated
steppe and desert as Bsteppe^, which can be viewed as dry grassland; and aggregated meadow
and alpine cushion as Bmeadow ,̂ which is moister than steppe. Trend analysis was then
performed for each aggregated vegetation type.

To evaluate the climate dependency of Treq, we investigated a number of environ-
mental variables based on existing literature. For spring, candidate variables include
mean spring air temperature, mean preseason air temperature, mean spring and
preseason soil temperature, cumulative spring and preseason precipitation, number of
chilling days (NCD). For autumn, candidate variables include mean preseason air and
soil temperature, cumulative summer precipitation and summer maximum weekly
vapor pressure deficit. Abbreviations and definitions for these climate variables are
listed in Table S1. We included NCD because several recent studies have emphasized
the negative correlation between chilling and GDD requirements (Jeong et al. 2013;
Fu et al. 2014; Shen et al. 2015). We calculated NCD as number of days when 7-day
moving average temperature drops below 0 °C since September 1st in last year. The
impacts of climate variables on Treq were quantified using the partial correlation
analysis by setting phenological metrics (i.e. SOS and EOS) as the control variable.
This partial regression helped to remove the covariation among multiple climatic
factors, and also partly reduced the uncertainty in metrics that were dependent on
SOS or EOS. For instance, if SOS is negatively biased, the corresponding GDD and
temperature threshold will also be negatively biased. All the data processing and
analysis were performed using R statistical software.

2.4 Updated phenology algorithm and TEM applications

In TEM, the impact of vegetation phenology on gross primary production (GPP) is
modeled as a scalar function, f(phenology), between 0 and 1 (Methods S2). This
study added soil thermal constraints on the phenological process as a sub-scalar of
thermal free percentage f(Treq):

f Treq

� � ¼ 0 ifT indicator ≤Treq

1 f T indicator > Treq

�
ð3Þ

where Tindicator is daily-updated GDD (calculated by Eqn-2) during spring and Tsoil7
during autumn, and Treq is the corresponding threshold (i.e. GDDreq for SOS and
Tsoil7 , req for EOS). The updated f(phenology) now becomes a product of the original
scalar and f(Treq). To mimic the empirical relations between thermal requirement and
climatic factors, Treq was reset for each growing season according to changes in NCD
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and preseason air temperature (see results for variable selection). For a given year t,
the spring Treq was calculated as:

GDDreq tð Þ ¼ GDDreq t−1ð Þ−β1 �ΔNCD tð Þ ð4Þ
in which ΔNCD is the difference in NCD between the current and previous year, and
will modify GDDreq in a rate of β1 (°C/day). Similarly, fall Treq was calculated as:

Tsoil7;req tð Þ ¼ Tsoil7;req t−1ð Þ þ β2ΔTFall tð Þ ð5Þ

where ΔTFall is the change in fall soil temperature compared to the previous year,
and will adjust Tsoil7 , req in a rate of β2 (°C/°C). Values of GDDreq and Tsoil7 , req for
the first year were derived from historical mean. The prognostic SOS and EOS
models were validated using the left-out 10 % SPOT-VGT phenology data in section
2.1 for the period 2000–2011.

To quantify the sensitivity of future phenology and carbon projections to changes in Treq,
we ran TEM for the twenty-first century with both static (β1 and β2 = 0) and dynamic (β1 and
β2 ≠ 0) thermal requirements. The value of β1 and β2 was derived from the partial regression
analysis for each aggregated vegetation type (Table S2), and was essential for the sensitivity
test. Vegetation-specific parameters for TEM were determined by calibrating the model output
to best fit the fluxes and pool sizes of field measurements (Methods S3). Two future climate
scenarios with a daily time step from 2001 to 2100 were generated by the MIT’s Integrated
Global Systems Model (IGSM) (Sokolov et al. 2009; Webster et al. 2012): a stabilization case
of policy control (PC) on greenhouse gas emissions and a business-as-usual case of no-policy
control (NPC). Under PC scenario, the atmospheric CO2 concentration rises to 478.55 ppm by
volume (ppmv) by the end of twenty-first century, and is accompanied by 1.8 °C regional
warming; under NPC, these values are 903.55 ppmv and 4.7 °C warming. The original data
with 0.5 degree cells were resampled to 8 km × 8 km using the inverse distance weighting
method. We ran TEM with static and dynamic Treq under each of the two emissions scenarios,
producing a total of 4 projected future trajectories.

3 Results

3.1 Historical trend of thermal requirement

During 1982–2011, both spring and autumn temperature on the TP had significant warming
trends of 0.4–0.5 °C /decade across all vegetation types (Table 1). However, Treq for SOS and
EOS did not consistently increase over this period. For spring, only GDD in the steppe showed
a significant trend of 1.13 °C/yr. (Fig. 2a). The 30-year TTholdS was almost zero (Fig. 2c),
suggesting moving-averaged temperature was indeed a stable thermal indicator within a time
window of few decades. For autumn, no meaningful trend in TTholdFwas observed for wood,
while significant increasing trends were detected for both steppe (0.37 °C/decade) and
meadow (0.23 °C /decade) (Fig. 2e). When splitting the study period into 1982–1999 and
2000–2011, no significant trend changes (change in coefficient sign) were observed (Table 1),
indicating that the 30-year temporal trend in Treq was robust. Spatially, only 22 % of the total
pixels had a significant change in spring GDD (Fig. 2b), with large increases (>2 °C/yr) mainly
taking place in the northeast of the TP. In contrast, only 14 % of total pixels had a significant
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change in terms of TTholdS, and no apparent spatial aggregation was identified (Fig. 2d). For
TTholdF, 21 % of the total study area had a significant change, in which most of the changes
were positive (>0.5 °C/decade) and occurred in steppe and meadow ecosystems (Fig. 2f).

3.2 Relationship between thermal requirement and climate factors

Although trend analysis suggested that only a small portion of the vegetation community had
statistically significant changes in Treq over the 30-year study period, the inter-annual variation
of these Treq were indeed substantial (Fig. 2). Noticing that several climate variables that can
potentially regulate Treq, such as chilling days, spring and fall temperature and summer
precipitation changed significantly for 1982–2011 (Table 1), we further questioned whether
the inter-annual variability of Treqwas induced by variation in year-to-year weather or simply a
result of uncertainty from phenology extraction.

For the spring, strong partial correlations were identified between GDD and a portion of
candidate climate variables after setting SOS as the control variable (Fig. 3). Partial correla-
tions were significantly negative between GDD and NCD for all vegetation types, in which the
strongest correlation occurred in steppe (ρ = − 0.81, P < 0.001) and followed by wood and
meadow. GDD was also significantly correlated with temperature (i.e. TPre or TSpring), with
the strength of partial correlation mostly similar to that between GDD and NCD except much
higher in wood (Fig. 3a). The effect of precipitation was to reduce the GDD requirement,
especially in the dry ecosystem of steppe, but none of these negative partial correlations from
different vegetation types were significant. The partial correlations between TTholdS and
climate variables were mostly non-significant, except for the significant negative correlations
with NCD (ρ = − 0.57, P < 0.001) and PrecPre (ρ = − 0.43, P = 0.023) observed in steppe.
Based on the partial correlation analysis, we believe chilling fulfillment is a good explanatory
variable for the inter-annual variability in the GDD requirement. First, NCD incorporates some

Table 1 Vegetation-specific coefficients of linear regressions between the thermal requirements or environment
variables and corresponding times. See Table S1 for variable definitions

1982–2011 1982–1999 2000–2011

Wood Steppe Meadow Wood Steppe Meadow Wood Steppe Meadow

Spring

GDD 0.18 1.13*** 0.24 −0.17 1.53* 0.57 0.11 1.74* 1.05

TTholdS −0.007 0.006 −0.01 −0.019 0.015 −0.013 −0.007 0.015 −0.012
NCD −0.45*** −0.46*** −0.36*** −0.96*** −0.62*** −0.69*** −0.36* −0.29 −0.32
TSpring 0.042*** 0.044*** 0.039** 0.11*** 0.082** 0.066*** 0.07* 0.063* 0.061*

TPre 0.011 0.046** 0.016* 0.01 0.044 0.017 0.02 0.15* 0.077*

PrecSpr 0.21 −0.093 −0.037 0.87 0.23 0.45 −1.23 −1.01* −0.69
PrecPre −0.07 0.043 −0.087 0.15 0.13 0.07 −1.68* 0.19 −0.78
Fall

TTholdF 0.0 0.037*** 0.023** −0.004 0.010 0.004 −0.008 0.044* 0.038

TFall 0.052*** 0.044*** 0.043*** 0.03 0.034 0.024 0.031* 0.069*** 0.037*

PrecSum 0.15 1.35*** 1.19* −0.25 2.72*** 1.13 1.23 −0.35 1.7*

MaxVPD 0.0 −0.004 0.007 0.0 −0.016* 0.009 −0.04 −0.01 −0.03

Statistical significance: B***^, P < 0.001; B**^, P < 0.01; B*^, P < 0.5
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of the variation in two of the other explanatory variables, TPre and TSpring, because these
thermal metrics were all highly correlated. Second, NCD is more robust and easy to implement
because its calculation in most cases is not dependent on the SOS (SOS normally happened
after Tair > 0, a time point when the accumulation of chilling days is already over). For the
autumn, TTholdF was significantly correlated with TPre for all vegetation types (Fig. 4), and
the strongest partial correlation also occurred in steppe (ρ = 0.81, P < 0.001). Summer precip-
itation unexpectedly increased TTholdF, although the partial correlation was only significant in
steppe (ρ = 0.64, P < 0.001). We speculate that the positive correlation between precipitation
and Treq might occur because wetter conditions shall boost summer growth leading to greater

Fig. 2 Averaged temporal dynamics of thermal requirement for each vegetation type and spatial patterns from
1982 to 2011. a and b: GDD requirement for SOS; c and d: Moving average temperature threshold for SOS; e
and f: threshold for EOS. For the spatial map, only pixels with significant change (α = 0.05) in thermal
requirement are shown
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water or nutrient depletion and hence early growth termination. MaxVPD, an indicator
supposed to capture both high temperature and the lag effect of water deficit, was not related
to the temporal variation in TTholdF.

Based on the coefficients of partial correlations, we developed a set of dynamic Treq for
each vegetation type (Table S2). New phenology algorithms were validated against the left-out
10 % SPOT-VGT NDVI data. Compared with remotely sensed spring onset, simulated SOS
for the years 2000–2011 had much higher root mean square errors (RMSE) of 6–16 days using
vegetation-specific GDD requirements than using localized parameters (Fig. S2a). Differences
between simulations with static and dynamic Treq were small (0.5 to 2.1 days), but the latter
consistently had smaller biases in terms of RMSE. Model-predicted EOS in general had a
smaller RMSE than that of SOS (Fig. S2b). Simulations with localized TTholdF reduced

Fig. 3 Vegetation-specific mean
partial correlation between thermal
requirement for spring onset and
environmental factors after setting
SOS as the control variable. See
Table S1 for variable definition.
Statistical significance: *,
P < 0.05; **, P < 0.01; ***,
P < 0.001
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RMSE to less than 5 days, compared with 6–15 days of bias from models that assign a
vegetation-specific parameter of Treq. Furthermore, RMSE was 1–2 days smaller for simula-
tions with dynamic Treq than those with localized but static Treq.

3.3 Simulated future phenology and carbon cycling

Modifications in the phenology algorithm meaningfully affected projections of both phenology
and carbon cycling. SOS and EOS for the twenty-first century differed substantially among
four simulations (Fig. 5a, b). SOS advanced less under the PC scenario than the NPC scenario.
The smallest advancements came with dynamic Treq under PC (slope = 0.3 days/decade,
P < 0.001), while the greatest advancement occurred in the simulation with static Treq under
NPC, in which SOS advanced by 2.1 days/decade (P < 0.001). Similarly, simulated EOS was
delayed as much as 1.9 days/decade (P < 0.001) with fixed Treq under NPC but only 0.2 days/

Fig. 4 Vegetation-specific mean
partial correlation between thermal
requirement for autumn
senescence and environmental
factors after setting EOS as the
control variable. See Table S1 for
variable definition. Statistical
significance: *, P < 0.05; **,
P < 0.01; ***, P < 0.001
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decade (P < 0.001) with dynamic Treq under PC (Fig. 5a). Growing season length extended
by 1 to 6 weeks, depending on assumptions about Treq and the climate scenario. In
general, higher emission scenarios will enlarge the difference between projections with
static and dynamic Treq.

For carbon modeling, our simulated baseline annual NPP for the 2000s was comparable
with other modeling or inventory-based estimations for major biomes on the TP (Table S3).
The estimated mean annual NPP density (187 g C m−2 yr.−1) falls in the range of other regional
studies (90–330 g C m−2 yr.−1). Spatially, NPP density was higher in eastern and southeastern
parts of the TP, and lower towards the northwest (Fig. 1b). Decadal mean annual NPP was
projected to increase from 211.1 Tg C yr.−1 in the 2000s up to 233.6 Tg C yr.−1 in the 2090s
under PC, and from 209.8 to 263.9–287.6 Tg C yr.−1 under NPC (Fig. 5c). The relative effect
on NPP of using a dynamic Treq was 2.7 % under PC and 8.9 % under NPC. Our estimated
mean annual NEP (3.1 Tg C yr.−1) for the 2000s was close to zero, suggesting alpine

Fig. 5 Projections of (a) end of growing season, (b) start of growing season, (b) net primary production and (d)
cumulative net ecosystem production for the study area during the twenty-first century. Simulations are based on
two future climate scenarios of policy control and no-policy control on greenhouse gas emissions combined with
assumptions of static and dynamic thermal requirement
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ecosystems on the TP have been nearly carbon neutral in recent years. This estimate is
consistent with Fang et al. (2010), who found neither biomass nor soil C stock in China’s
grasslands changed significantly during the past 20 years. Cumulative NEP was 569–691 Tg C
at the end of the twenty-first century under PC and 1674–1950 Tg C under NPC (Fig. 5d).
Using a dynamic Treq reduced cumulative NEP projections by 17.7 % under PC and 14.2 %
under NPC.

4 Discussion

4.1 Understanding thermal requirement dynamics

Studies of temporal variation in Treq have not drawn much attention until recent years (Eccel
et al. 2009; Fu et al. 2015), and the causes thus remain elusive. Ecological consequences of
such variation may be important, as we found a relative difference of 8.9 % in NPP and
a ~ 15 % relative difference in NEP through scenario simulations. Whether Treq truly operate
through cumulative heat demand or environmental cues of a favored leaf-out condition still
needs to be clarified with additional study. If Treq is viewed as heat demand, it may shift
because changes in other climate factors could compensate or moderate the demand via
complex feedbacks. A number of such regulating factors have been proposed, among which
the roles of chilling (Körner 2007; Eccel et al. 2009; Jeong et al. 2013; Fu et al. 2014, 2015;
Shen et al. 2015) and precipitation (Fu et al. 2014; Shen et al. 2015) have been repeatedly
emphasized. In our study, we also identified significant partial correlations between the
strength of chilling and GDD, and showed that phenology models with a dynamic GDD
requirement simulate observations better than the default model. However, our analysis did not
support a role of precipitation in shaping the GDD requirement. The use of total precipitation
data in our study, without discrimination between rainfall and snow could be one reason.
While hypotheses have put forward to explain how water availability can adjust phenological
thermal requirements (Fu et al. 2015), our mechanistic understanding of this issue remains
rudimentary, and the topic deserves further investigation.

If Treq is viewed as an environmental cue rather than an indicator of heat demand, its changes
over time are more likely a result of acclimation, genetic evolution or phenotypic plasticity
determined by local environmental cues (Diez et al. 2012). Evolution is thought to be a slow
process, but evolutionary rates may largely depend on the costs associated with having the
Bwrong^ phenological response at a given time (Pau et al. 2011). Species with short generation
times and large population sizes (e.g. annual grassland species on the TP) have greater potential
to evolve under rapid climate change (Hoffmann and Sgro 2011). Species in variable habitats
may be more sensitive to climatic cues, and hence more capable of adjusting their growth
strategy to maximize survival and reproduction (Pau et al. 2011). Under selection pressures, the
ability of an individual to shift Treq could be further explained as an inherited self-protection
mechanism against being overly sensitive to climatic variation (Bennie et al. 2010).

4.2 Uncertainties and implications

This study is among the first to use long-term NDVI datasets to investigate the temporal trend
of phenological Treq for alpine vegetation. However, a few limitations of this study should be
mentioned, and potential solutions are discussed.
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First, there are several sources of data uncertainties. Although we have applied several steps
to reduce the noise in the NDVI time-series during preprocessing, phenological results must be
interpreted in view of the biweekly temporal resolution for GIMMS or 10 days for SPOT-VGT
(Zhu et al. 2012). The choice of NDVIratio to determine phenological metrics also brings
uncertainty (White et al. 2009; Shen et al. 2015). Compared with observational phenology
data, RMSE under our NDVIratio is 10.6 days for SOS and 13.5 days for EOS (Yu et al. 2010).
In addition, downscaling coarse climate data into finer resolution is another source of data
uncertainty (Frauenfeld et al. 2005), but can be reduced if the density of meteorological
stations increases in the future (Jin et al. 2013). Essentially, any improvements in remote
sensing data, methods for extracting phenological metrics, or reanalysis products will greatly
improve our ability to quantify the temporal trend of thermal requirement and its climatic
causes.

Second, while our analysis mainly focused on temperature, fulfillment of chilling, and
precipitation, other climatic factors including photoperiod (Jeong et al. 2012), light intensity
(Fu et al. 2015), and snowmelt (Inouye and Wielgolaski 2013) should be further examined in
future studies. In temperate grassland, photoperiod plays a secondary role after other climatic
constraints (Migliavacca et al. 2011), and is more often linked with flowering rather than leaf
out. Therefore, we believe photoperiod does not currently constrain the phenology of the
alpine ecosystem on the TP, but may become a limiting factor in the future. Light intensity
(often measured by downward shortwave irradiance) has minor effects on the large portion of
our study area that is covered by steppe and meadow and dominated by plant species whose
buds remain belowground during dormancy. Although snowmelt can affect phenology in
alpine regions (Migliavacca et al. 2011; Richardson et al. 2013), we believe the impact of snow
is reduced by using average NDVI of February and March as the NDVImin. Moreover, our
results still held when we increased the spring NDVIratio from 0.2 to 0.3(data not shown),
indicating the impact of snow melting is small.

Third, by using remote sensing data, we could only test for apparent changes in heat
requirement for the whole community within each pixel, and thus could not isolate
responses of individual plants or even species. Evidence shows that species with differ-
ent phylogenetic origins usually have different thermal requirements for triggering
phenology (Bennie et al. 2010; Diez et al. 2012), and late season species often show
larger shifts in thermal requirements than early season groups in response to the ongoing
warming (Fu et al. 2015). We believe such a mechanism is unlikely to operate in our
study, because there was no evidence of fast year-to-year species turnover in alpine
ecosystems on the TP, but vegetation dynamics should be taken into account when
phenology models are applied to regions in which the flora is undergoing changes. To
fully untangle the complex pattern of changes in thermal requirements at the community
level, additional observations and well-designed warming manipulation experiments are
required (Richardson et al. 2013).

5 Conclusion

In this study, we investigated the temporal trend and inter-annual variability of Treq for alpine
and temperate vegetation phenology on the Tibetan Plateau. Our analysis uncovered only a
weak trend in Treq over time, even as the climate warmed dramatically over the same period. A
more significant trend was observed in steppe and meadow, which have faster potential
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turnover of individuals and species than woody ecosystems. We found that Treq was correlated
with the inter-annual variation of several climate factors, indicating that this indicator for
thermal demand can adjust quickly to shifting climate conditions. The number of chilling days
and fall temperature were robust predictors for the Treq of spring and autumn, respectively.
Projected future phenology and regional-scale carbon cycling over the twenty-first century
were sensitive to the choice of static or dynamic Treq in the phenology model. Our results
indicated that the temporal dynamics of Treq were different from its spatial patterns, and would
have meaningful impacts on regional carbon cycling. We expect that the analysis presented in
this study can be applied in other temperate and arctic regions where warming is expected to be
more dramatic in the future. Identifying and understanding the mechanisms through which
climatic factors co-vary with thermal requirement can improve projections of plant phenology
in the ecosystem models that use PFTs to represent the vegetation community, and further
reduce the uncertainty in future carbon cycle projections.
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