欢迎进入兰州大学数学与统计学院

魏婷

兰州大学数学与统计学院     教授   魏婷

研究方向
        主要研究方向是数学物理方程反问题的计算方法及理论研究,在椭圆方程和抛物方程的反问题方面取得了一系列成果,目前主要从事分数阶扩散和扩散波方程反问题的理论与计算方法研究。
个人简历
魏婷,教授,博导。现为中国工业与应用数学学会的常务理事。入选2006年度的教育部新世纪优秀人才支持计划。
1987年本科毕业于复旦大学数学系, 
1990年获复旦大学数学所应用数学硕士学位,
2005年获香港城市大学理学博士学位。
1990年至今在兰州大学数学与统计学院工作,
2003年晋升为副教授并被批准为硕士生导师, 
2006年晋升为教授,
2007年被批准为博士生导师。
        已主持完成 3项国家自然科学基金面上项目,  目前正在主持1项面上项目“分数阶扩散波方程的理论及计算方法研究”, 在Inverse Probl, SIAM J Numer Anal, Adv Comput Math等学术刊物上发表论文90篇,被SCI收录论文70余篇。曾多次赴香港、日本、美国作访问学者,并参加了在日本、澳大利亚、中国、斯洛伐克、韩国、芬兰、美国、德国等国家及香港、台湾地区举行的国际会议, 做大会邀请报告十余次。
教学及指导学生情况
已培养博士研究生10余名,硕士研究生30余名。
发表论文及专著
近五年发表的论文:
1.Y. S. Li, T. Wei, An inverse time-dependent source problem for a time-space fractional diffusion equation, Applied Mathematics and Computation, 336(2018), 257-271.
2.X. B. Yan, T. Wei, Inverse space-dependent source problem for a time-fractional diffusion equation by an adjoint problem approach, Journal of Inverse and Ill-Posed Problems, to appear.
3.T. Wei and Y. S. Li, Identifying a diffusion coefficient in a time-fractional diffusion equation, Mathematics and Computers in Simulation, 151(2018), 77-95.
4.T. Wei, Y. Zhang, The backward problem for a time-fractional diffusion-wave equation, Computers and Mathematics with Applications, to appear.  
5.L.L. Sun and T. Wei, Identification of the zeroth-order coefficient in a time fractional diffusion equation, Applied Numerical Mathematics, 111(2017)160–180.
6.T. Wei, J. G. Wang, Determination of Robin coefficient in a fractional diffusion problem, Applied Mathematical Modeling, 40(2016), 7948-7961.
7.T. Wei, L.L. Sun and Y. S. Li, Uniqueness for an inverse space-dependent source term in  a multi-dimensional time-fractional diffusion equation, Applied Mathematics Letters, 61 (2016), 108–113.
8.T. Wei, X. L. Li and Y. S. Li, An inverse time-dependent source problem for a time-fractional diffusion equation, Inverse Problems, 32(2016), no. 8, 085003.
9.C. Shi, C. Wang, T. Wei, Convolution regularization method for backward problems of linear parabolic equations, Applied Numerical Mathematics, 108(2016)143–156.
10.T. Wei, Z.Q. Zhang, Robin coefficient identification for a time-fractional diffusion equation, Inverse Problems in Science & Engineering, 24(2016), no.4, 647-666.
11.J. G. Wang and T. Wei, Quasi-reversibility method to identify a space-dependent source for the time-fractional diffusion equation,Applied Mathematical Modeling, 39(2015), 6139-6149. 
12.J. G. Wang, T. Wei, Y. B. Zhou,Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation,Journal of Computational and Applied Mathematics,279( 2015), Pages 277–292.
13.C. Shi, C. Wang, G. H. Zheng, T. Wei, A new a posteriori parameter choice strategy for the convolution regularization of the space-fractional backward diffusion problem, Journal of Computational and Applied Mathematics, 279( 2015), Pages 233–248.
14.J. G. Wang and T. Wei, An iteration method on backward time-fractional diffusion problem,Numerical Methods for Partial Differential Equations, 30(2014), 2029-2041.
15.C. S. Shi, C. Wang, T. Wei, Numerical solution for an inverse heat source problem by an iterative method,  Applied Mathematics and Computation,244(2014), 577-597.
16.G. H. Zheng and T. Wei, Recover the source and initial value simultaneously in a parabolic equation, Inverse Problems, 30(2014), 065013(35pp).
17.H. W. Zhang, T. Wei, A Fourier truncated regularization method for a Cauchy problem of a semi-linear elliptic equation, Journal of Inverse and Ill-posed Problems. Volume 22, Issue 2, Pages 143–168.
18.H. W. Zhang, T. Wei,Two iterative methods for a Cauchy problem of the elliptic equation with variable coefficients in a strip region, Numerical Algorithms,65(2014), No. 4, 875-892.
19.T. Wei, J. G. Wang, A modified quasi-boundary value method for the backward time-fractional diffusion problem, ESAIM: Mathematical Modelling and Numerical Analysis,M2AN, 48(2), 2014, 603-621.
20.T. Wei and J.G Wang,A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation,Applied Numerical Mathematics, 78(2014), Pages 95–111.
21.T. Wei, Z.Q. Zhang, Stable numerical solution to a Cauchy problem for a time fractional diffusion equation, Engineering Analysis with Boundary Elements,40(2014),128-137.
22.J. G. Wang, T. Wei, Y. B. Zhou, Tikhonov regularization method for a backward problem for the time-fractional diffusion equation,Applied Mathematical Modeling,32(2013),No. 18-19, 8518-8532.
23.Z. Q. Zhang, T. Wei, An optimal regularization method for space-fractional backward diffusion problem,Mathematics and Computers in Simulation,92 (2013), 14–27.
24.J. C. Liu and T. Wei, A quasi-reversibility regularization method for an inverse heat conduction problem without initial data,Applied Mathematics and Computation, Vol. 219(2013), No. 23, 10866–10881.
25.J. G. Wang, Y. B. Zhou, T. Wei, A posteriori regularization parameter choice rule for the quasi-boundary value method for the backward time-fractional diffusion problem, Applied Mathematics Letter. Vol. 26(2013), No. 7, 741-747.
26.J. G. Wang, Y. B. Zhou, T. Wei, Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation, Applied Numerical Mathematics,68(2013), 39-57. 
27.J. Wen, M. Yamamoto, T. Wei, Simultaneous determination of a heat source and the initial temperature in an inverse heat conduction problem, Inverse Problems in Science & Engineering,Volume 21, Issue 3, pages 485-499,2013.
28.Z. Q. Zhang, T. Wei, Identifying an unknown source in time-fractional diffusion equation by a truncation method, Applied Mathematics and Computation, 219(11), 5972–5983,2013. 
29.T. Wei, Y. G. Chen and J. C. Liu, A variational-type method of fundamental solutions for a        Cauchy problem of Laplace's equation, Applied Mathematical Modelling, 37(2013), 1039-1053.
T. Wei and Z. Q. Zhang, Reconstruction of a time-dependent source term in a time-fractional diffusion equation, Engineering Analysis with Boundary Elements. 37(2013), 23-31.
项目成果
1.国家基金面上项目:分数阶扩散波方程反问题的理论与计算方法,2018.1-2021.12。(主持,在研)
2.国家基金面上项目:分数阶扩散方程反问题的计算方法及理论研究,2014.1-2017.12。(主持,已完成)
3.国家基金面上项目:偏微分方程的边界辨识问题,2010.1-2012.12。(主持,已完成)
4.新世纪人才支持计划,2007-2009。(已完成)
5.国家基金面上项目:不适定问题的正则化计算方法,2006.1-2008.12。 (主持,已完成)。
荣誉、获奖
社会工作
2016.8-2020.8	 中国工业与应用数学学会	常务理事
其它信息

作者:魏婷